Transcriptome analysis revealed that Arabidopsis model plant invokes the activation of heat shock proteins and ER stress response against cesium stress

IF 1.7 4区 生物学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Plant Biotechnology Reports Pub Date : 2024-04-04 DOI:10.1007/s11816-024-00895-4
Dasom Choi, Dae Kwan Ko, Dong-Hwan Kim
{"title":"Transcriptome analysis revealed that Arabidopsis model plant invokes the activation of heat shock proteins and ER stress response against cesium stress","authors":"Dasom Choi, Dae Kwan Ko, Dong-Hwan Kim","doi":"10.1007/s11816-024-00895-4","DOIUrl":null,"url":null,"abstract":"<p>Cesium (Cs) toxicity has deleterious effects on plant growth and development. However, the molecular mechanism of the toxic effect of Cs on plants has been poorly understood. To obtain insights into the molecular events occurring in plants under Cs stress, we performed a comparative transcriptomic analysis between control and Cs-treated plants via RNA-seq. We identified 183 differentially expressed genes (141 upregulated and 42 downregulated) under Cs stress (1.5 mM CsCl). Gene ontology (GO) analysis using differentially expressed genes in Cs stress indicated that Cs triggered plant stress signaling pathways like reactive oxygen species (i.e., hydrogen peroxide). Further KEGG and MapMan metabolic pathway analyses revealed that many abiotic/biotic stress signaling pathways were highly induced. In particular, heat shock protein family genes were substantially induced upon exposure to Cs stress. We investigated the root growth of several knockout mutants of heat shock protein family genes and found that heat stress response was compromised in these mutants compared to wild type plants. It suggested that heat shock protein genes including <i>HSP17s, HSP23s</i>, <i>HSP101</i>, and <i>HSFA2</i> proteins are deployed upon exposure to Cs for plant stress tolerance. Our study provided novel insights into the molecular events occurring in Cs-stressed plants.</p>","PeriodicalId":20216,"journal":{"name":"Plant Biotechnology Reports","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biotechnology Reports","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11816-024-00895-4","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cesium (Cs) toxicity has deleterious effects on plant growth and development. However, the molecular mechanism of the toxic effect of Cs on plants has been poorly understood. To obtain insights into the molecular events occurring in plants under Cs stress, we performed a comparative transcriptomic analysis between control and Cs-treated plants via RNA-seq. We identified 183 differentially expressed genes (141 upregulated and 42 downregulated) under Cs stress (1.5 mM CsCl). Gene ontology (GO) analysis using differentially expressed genes in Cs stress indicated that Cs triggered plant stress signaling pathways like reactive oxygen species (i.e., hydrogen peroxide). Further KEGG and MapMan metabolic pathway analyses revealed that many abiotic/biotic stress signaling pathways were highly induced. In particular, heat shock protein family genes were substantially induced upon exposure to Cs stress. We investigated the root growth of several knockout mutants of heat shock protein family genes and found that heat stress response was compromised in these mutants compared to wild type plants. It suggested that heat shock protein genes including HSP17s, HSP23s, HSP101, and HSFA2 proteins are deployed upon exposure to Cs for plant stress tolerance. Our study provided novel insights into the molecular events occurring in Cs-stressed plants.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
转录组分析发现拟南芥模式植物在铯胁迫下会激活热休克蛋白和ER胁迫反应
铯(Cs)毒性对植物的生长和发育具有有害影响。然而,人们对铯对植物毒性作用的分子机制还知之甚少。为了深入了解植物在铯胁迫下发生的分子事件,我们通过 RNA-seq 对对照植物和铯处理植物进行了转录组比较分析。我们确定了铯胁迫(1.5 mM CsCl)下的 183 个差异表达基因(141 个上调,42 个下调)。利用 Cs 胁迫下差异表达基因进行的基因本体(GO)分析表明,Cs 触发了植物胁迫信号通路,如活性氧(即过氧化氢)。进一步的 KEGG 和 MapMan 代谢通路分析表明,许多非生物/生物胁迫信号通路被高度诱导。特别是,热休克蛋白家族基因在受到 Cs 胁迫时被大量诱导。我们研究了几种热休克蛋白家族基因敲除突变体的根系生长情况,发现与野生型植物相比,这些突变体的热胁迫响应受到了影响。这表明,热休克蛋白基因(包括 HSP17s、HSP23s、HSP101 和 HSFA2 蛋白)在暴露于 Cs 时会被调配以提高植物的胁迫耐受性。我们的研究为了解 Cs 胁迫植物中发生的分子事件提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Biotechnology Reports
Plant Biotechnology Reports 生物-生物工程与应用微生物
CiteScore
4.10
自引率
4.20%
发文量
72
审稿时长
>12 weeks
期刊介绍: Plant Biotechnology Reports publishes original, peer-reviewed articles dealing with all aspects of fundamental and applied research in the field of plant biotechnology, which includes molecular biology, genetics, biochemistry, cell and tissue culture, production of secondary metabolites, metabolic engineering, genomics, proteomics, and metabolomics. Plant Biotechnology Reports emphasizes studies on plants indigenous to the Asia-Pacific region and studies related to commercialization of plant biotechnology. Plant Biotechnology Reports does not exclude studies on lower plants including algae and cyanobacteria if studies are carried out within the aspects described above.
期刊最新文献
Overexpression of CRK4, the cysteine-rich receptor-like protein kinase of Arabidopsis, regulates the resistance to abiotic stress and abscisic acid responses Identification and characterization of a novel Wx-B1 allele in a waxy wheat (Triticum aestivum L.) Molecular characterization of a sweetpotato stress tolerance-associated GDP-L-galactose phosphorylase gene (IbGGP1) in response to abiotic stress Differential expression of sweetpotato nodulin 26-like intrinsic protein (NIP) genes in response to infection with the root knot nematode Identification of key genes regulating macronutrient accumulation and final yield in wheat under potassium deficiency
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1