Effect of shock impingement location on the fluid–structure interactions over a compliant panel

IF 1.7 4区 工程技术 Q3 MECHANICS Shock Waves Pub Date : 2024-04-15 DOI:10.1007/s00193-024-01162-9
A. Tripathi, J. Gustavsson, K. Shoele, R. Kumar
{"title":"Effect of shock impingement location on the fluid–structure interactions over a compliant panel","authors":"A. Tripathi, J. Gustavsson, K. Shoele, R. Kumar","doi":"10.1007/s00193-024-01162-9","DOIUrl":null,"url":null,"abstract":"<p>An experimental investigation was carried out to study the fluid–structure interactions on a compliant panel subjected to an impinging shock wave and an incoming turbulent boundary layer. These experiments were aimed at understanding the time-averaged and unsteady characteristics of fluid–structure interaction at Mach 2. Two shock impingement locations on the panel (aspect ratio of 2.82), namely the central and three-fourths of the panel length, were tested. The shock boundary layer interactions on a rigid flat plate served as a baseline case. Measurements include shadowgraph and surface oil flow visualizations, panel deflections using a capacitance probe, cavity acoustics using a pressure sensor, surface pressures using discrete pressure sensors, and pressure-sensitive paints. Results show that the interaction on the compliant panel is relatively three-dimensional as compared to a rigid plate with a nominally two-dimensional interaction. Pressure fluctuations on the compliant panel are significantly higher than on the rigid plate, and the fluctuation spectra are multi-modal. Strong coupling at some frequencies was observed between the shock and the panel for both shock impingement locations. The present study suggests that for a compliant panel, the shape of pressure spectra is sensitive to the measurement location on the panel, the panel modifies the pressure distribution around the interaction, and the energy in dominant modes depends on the shock impingement location.</p>","PeriodicalId":775,"journal":{"name":"Shock Waves","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Shock Waves","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00193-024-01162-9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

An experimental investigation was carried out to study the fluid–structure interactions on a compliant panel subjected to an impinging shock wave and an incoming turbulent boundary layer. These experiments were aimed at understanding the time-averaged and unsteady characteristics of fluid–structure interaction at Mach 2. Two shock impingement locations on the panel (aspect ratio of 2.82), namely the central and three-fourths of the panel length, were tested. The shock boundary layer interactions on a rigid flat plate served as a baseline case. Measurements include shadowgraph and surface oil flow visualizations, panel deflections using a capacitance probe, cavity acoustics using a pressure sensor, surface pressures using discrete pressure sensors, and pressure-sensitive paints. Results show that the interaction on the compliant panel is relatively three-dimensional as compared to a rigid plate with a nominally two-dimensional interaction. Pressure fluctuations on the compliant panel are significantly higher than on the rigid plate, and the fluctuation spectra are multi-modal. Strong coupling at some frequencies was observed between the shock and the panel for both shock impingement locations. The present study suggests that for a compliant panel, the shape of pressure spectra is sensitive to the measurement location on the panel, the panel modifies the pressure distribution around the interaction, and the energy in dominant modes depends on the shock impingement location.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
冲击撞击位置对顺应性面板上流体与结构相互作用的影响
为了研究受冲击波和进入的湍流边界层影响的柔性面板上的流固相互作用,进行了一项实验研究。这些实验旨在了解 2 马赫时流体与结构相互作用的时间平均特性和非稳定特性。测试了面板上的两个冲击撞击位置(长宽比为 2.82),即面板长度的中央和四分之三处。刚性平板上的冲击边界层相互作用作为基线案例。测量包括阴影图和表面油流可视化、使用电容探头的面板偏转、使用压力传感器的空腔声学、使用离散压力传感器的表面压力以及压敏涂料。结果表明,与名义上具有二维相互作用的刚性板相比,顺应性面板上的相互作用是相对三维的。顺应性面板上的压力波动明显高于刚性板上的压力波动,而且波动频谱是多模式的。在冲击撞击的两个位置,都观察到冲击与面板之间在某些频率上的强耦合。本研究表明,对于顺应性面板,压力频谱的形状对面板上的测量位置很敏感,面板会改变相互作用周围的压力分布,主要模式的能量取决于冲击撞击位置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Shock Waves
Shock Waves 物理-力学
CiteScore
4.10
自引率
9.10%
发文量
41
审稿时长
17.4 months
期刊介绍: Shock Waves provides a forum for presenting and discussing new results in all fields where shock and detonation phenomena play a role. The journal addresses physicists, engineers and applied mathematicians working on theoretical, experimental or numerical issues, including diagnostics and flow visualization. The research fields considered include, but are not limited to, aero- and gas dynamics, acoustics, physical chemistry, condensed matter and plasmas, with applications encompassing materials sciences, space sciences, geosciences, life sciences and medicine. Of particular interest are contributions which provide insights into fundamental aspects of the techniques that are relevant to more than one specific research community. The journal publishes scholarly research papers, invited review articles and short notes, as well as comments on papers already published in this journal. Occasionally concise meeting reports of interest to the Shock Waves community are published.
期刊最新文献
Asymmetry of imploding detonations in thin channels Optical measurement of state variables associated with blast wave evolution Influence of fuel inhomogeneity on detonation wave propagation in a rotating detonation combustor A review of current safe distance calculations and the risk of mild traumatic brain injury Microwave radar diagnostics of piston motion in a free-piston-driven expansion tube
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1