A primal–dual interior point method to implicitly update Gurson–Tvergaard–Needleman model

IF 3.7 2区 工程技术 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Computational Mechanics Pub Date : 2024-04-15 DOI:10.1007/s00466-024-02466-4
Yuichi Shintaku, Tatsuhiko Inaoka, Kenjiro Terada
{"title":"A primal–dual interior point method to implicitly update Gurson–Tvergaard–Needleman model","authors":"Yuichi Shintaku, Tatsuhiko Inaoka, Kenjiro Terada","doi":"10.1007/s00466-024-02466-4","DOIUrl":null,"url":null,"abstract":"<p>This study proposes an implicit algorithm applying the primal–dual interior point method (PDIP method) to stabilize the stress update when using a class of the Gurson–Tvergaard–Needleman model (GTN model). The GTN model is widely used to realize the change in void volume fraction that governs ductile fracture in metals, but numerical instabilities arise due to shrinkage of the yield surface and the accelerated void growth. In fact, such shrinkage can lead to misjudgment of yield conditions when using conventional return mapping algorithms, since trial elastic stresses are computed assuming zero incremental plastic strain. In addition, the change in void volume fraction is often approximated in bilinear form to represent the acceleration of void growth, but should be smooth to apply nonlinear solution methods such as the Newton’s method. To avoid such inconvenience in the implicit stress update for the GTN model and ensure numerical stability, we propose an algorithm that replaces the constitutive equations with inequality constraints with an equivalent constrained optimization problem by applying the PDIP method. After verifying the numerical accuracy and convergence of the proposed implicit algorithm using iso-error maps, we demonstrate its capability through several numerical examples that cannot be solved by the conventional return mapping algorithm or the PDIP method applied only to the inequality constraint corresponding to the yield condition.</p>","PeriodicalId":55248,"journal":{"name":"Computational Mechanics","volume":"7 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00466-024-02466-4","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This study proposes an implicit algorithm applying the primal–dual interior point method (PDIP method) to stabilize the stress update when using a class of the Gurson–Tvergaard–Needleman model (GTN model). The GTN model is widely used to realize the change in void volume fraction that governs ductile fracture in metals, but numerical instabilities arise due to shrinkage of the yield surface and the accelerated void growth. In fact, such shrinkage can lead to misjudgment of yield conditions when using conventional return mapping algorithms, since trial elastic stresses are computed assuming zero incremental plastic strain. In addition, the change in void volume fraction is often approximated in bilinear form to represent the acceleration of void growth, but should be smooth to apply nonlinear solution methods such as the Newton’s method. To avoid such inconvenience in the implicit stress update for the GTN model and ensure numerical stability, we propose an algorithm that replaces the constitutive equations with inequality constraints with an equivalent constrained optimization problem by applying the PDIP method. After verifying the numerical accuracy and convergence of the proposed implicit algorithm using iso-error maps, we demonstrate its capability through several numerical examples that cannot be solved by the conventional return mapping algorithm or the PDIP method applied only to the inequality constraint corresponding to the yield condition.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
隐式更新古尔松-特维尔加德-尼德尔曼模型的基元二元内点法
本研究提出了一种隐式算法,应用原始双内点方法(PDIP 方法)来稳定使用一类 Gurson-Tvergaard-Needleman 模型(GTN 模型)时的应力更新。GTN 模型被广泛用于实现支配金属韧性断裂的空隙体积分数变化,但由于屈服面收缩和空隙加速增长,会产生数值不稳定性。事实上,在使用传统的回归映射算法时,这种收缩会导致对屈服条件的错误判断,因为试验弹性应力是在假定增量塑性应变为零的情况下计算的。此外,空隙体积分数的变化通常以双线性形式近似表示空隙增长的加速度,但在应用牛顿法等非线性求解方法时应保持平滑。为了避免 GTN 模型隐式应力更新中的这种不便,并确保数值稳定性,我们提出了一种算法,即通过应用 PDIP 方法,用等效约束优化问题取代带不等式约束的构成方程。在使用等误差图验证了所提出的隐式算法的数值精度和收敛性后,我们通过几个数值示例证明了该算法的能力,这些示例无法通过传统的返回映射算法或仅适用于与屈服条件相对应的不等式约束的 PDIP 方法来解决。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computational Mechanics
Computational Mechanics 物理-力学
CiteScore
7.80
自引率
12.20%
发文量
122
审稿时长
3.4 months
期刊介绍: The journal reports original research of scholarly value in computational engineering and sciences. It focuses on areas that involve and enrich the application of mechanics, mathematics and numerical methods. It covers new methods and computationally-challenging technologies. Areas covered include method development in solid, fluid mechanics and materials simulations with application to biomechanics and mechanics in medicine, multiphysics, fracture mechanics, multiscale mechanics, particle and meshfree methods. Additionally, manuscripts including simulation and method development of synthesis of material systems are encouraged. Manuscripts reporting results obtained with established methods, unless they involve challenging computations, and manuscripts that report computations using commercial software packages are not encouraged.
期刊最新文献
An improved thermomechanical model for the prediction of stress and strain evolution in proximity to the melt pool in powder bed fusion additive manufacturing A consistent discretization via the finite radon transform for FFT-based computational micromechanics On the use of scaled boundary shape functions in adaptive phase field modeling of brittle fracture Efficient and accurate analysis of locally resonant acoustic metamaterial plates using computational homogenization Modeling cellular self-organization in strain-stiffening hydrogels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1