{"title":"A primal–dual interior point method to implicitly update Gurson–Tvergaard–Needleman model","authors":"Yuichi Shintaku, Tatsuhiko Inaoka, Kenjiro Terada","doi":"10.1007/s00466-024-02466-4","DOIUrl":null,"url":null,"abstract":"<p>This study proposes an implicit algorithm applying the primal–dual interior point method (PDIP method) to stabilize the stress update when using a class of the Gurson–Tvergaard–Needleman model (GTN model). The GTN model is widely used to realize the change in void volume fraction that governs ductile fracture in metals, but numerical instabilities arise due to shrinkage of the yield surface and the accelerated void growth. In fact, such shrinkage can lead to misjudgment of yield conditions when using conventional return mapping algorithms, since trial elastic stresses are computed assuming zero incremental plastic strain. In addition, the change in void volume fraction is often approximated in bilinear form to represent the acceleration of void growth, but should be smooth to apply nonlinear solution methods such as the Newton’s method. To avoid such inconvenience in the implicit stress update for the GTN model and ensure numerical stability, we propose an algorithm that replaces the constitutive equations with inequality constraints with an equivalent constrained optimization problem by applying the PDIP method. After verifying the numerical accuracy and convergence of the proposed implicit algorithm using iso-error maps, we demonstrate its capability through several numerical examples that cannot be solved by the conventional return mapping algorithm or the PDIP method applied only to the inequality constraint corresponding to the yield condition.</p>","PeriodicalId":55248,"journal":{"name":"Computational Mechanics","volume":"7 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00466-024-02466-4","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This study proposes an implicit algorithm applying the primal–dual interior point method (PDIP method) to stabilize the stress update when using a class of the Gurson–Tvergaard–Needleman model (GTN model). The GTN model is widely used to realize the change in void volume fraction that governs ductile fracture in metals, but numerical instabilities arise due to shrinkage of the yield surface and the accelerated void growth. In fact, such shrinkage can lead to misjudgment of yield conditions when using conventional return mapping algorithms, since trial elastic stresses are computed assuming zero incremental plastic strain. In addition, the change in void volume fraction is often approximated in bilinear form to represent the acceleration of void growth, but should be smooth to apply nonlinear solution methods such as the Newton’s method. To avoid such inconvenience in the implicit stress update for the GTN model and ensure numerical stability, we propose an algorithm that replaces the constitutive equations with inequality constraints with an equivalent constrained optimization problem by applying the PDIP method. After verifying the numerical accuracy and convergence of the proposed implicit algorithm using iso-error maps, we demonstrate its capability through several numerical examples that cannot be solved by the conventional return mapping algorithm or the PDIP method applied only to the inequality constraint corresponding to the yield condition.
期刊介绍:
The journal reports original research of scholarly value in computational engineering and sciences. It focuses on areas that involve and enrich the application of mechanics, mathematics and numerical methods. It covers new methods and computationally-challenging technologies.
Areas covered include method development in solid, fluid mechanics and materials simulations with application to biomechanics and mechanics in medicine, multiphysics, fracture mechanics, multiscale mechanics, particle and meshfree methods. Additionally, manuscripts including simulation and method development of synthesis of material systems are encouraged.
Manuscripts reporting results obtained with established methods, unless they involve challenging computations, and manuscripts that report computations using commercial software packages are not encouraged.