Mortality improvement neural-network models with autoregressive effects

Hung-Tsung Hsiao, Chou-Wen Wang, I.-Chien Liu, Ko-Lun Kung
{"title":"Mortality improvement neural-network models with autoregressive effects","authors":"Hung-Tsung Hsiao, Chou-Wen Wang, I.-Chien Liu, Ko-Lun Kung","doi":"10.1057/s41288-024-00321-4","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we propose a neural network (NN) architecture of mortality improvement model with cohort effect. We then extend the mortality improvement NN model to consider autoregressive effects, which allows mortality improvement to depend on the lagged mortality rates. The advantage of our NN model setup is that the parameters of period and cohort effects are implicitly estimated by the NN models, and hence, the mortality projection can be obtained without taking the extra steps of selecting and estimating the suitable time-series model for period and cohort effects. Our empirical results suggests that, based on 48 populations in the Human Mortality Database with complete sets of observations from 1950 with the age span of 55–90, the NN models with cohort and autoregressive effects improve the forecast accuracy of mortality rate projections and provide better prediction performance.</p>","PeriodicalId":75009,"journal":{"name":"The Geneva papers on risk and insurance. Issues and practice","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Geneva papers on risk and insurance. Issues and practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1057/s41288-024-00321-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a neural network (NN) architecture of mortality improvement model with cohort effect. We then extend the mortality improvement NN model to consider autoregressive effects, which allows mortality improvement to depend on the lagged mortality rates. The advantage of our NN model setup is that the parameters of period and cohort effects are implicitly estimated by the NN models, and hence, the mortality projection can be obtained without taking the extra steps of selecting and estimating the suitable time-series model for period and cohort effects. Our empirical results suggests that, based on 48 populations in the Human Mortality Database with complete sets of observations from 1950 with the age span of 55–90, the NN models with cohort and autoregressive effects improve the forecast accuracy of mortality rate projections and provide better prediction performance.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有自回归效应的死亡率改进神经网络模型
在本文中,我们提出了一种具有队列效应的死亡率改进模型神经网络(NN)结构。然后,我们扩展了死亡率改善神经网络模型,以考虑自回归效应,从而使死亡率改善取决于滞后死亡率。我们的 NN 模型设置的优势在于,NN 模型隐含了时期效应和队列效应的参数估计,因此,无需为时期效应和队列效应选择和估计合适的时间序列模型等额外步骤,即可获得死亡率预测结果。我们的实证结果表明,基于人类死亡率数据库中从 1950 年起年龄跨度为 55-90 岁的 48 个人群的完整观测数据,具有队列效应和自回归效应的 NN 模型提高了死亡率预测的准确性,并提供了更好的预测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Microinsurance research: status quo and future research directions Investment in big data analytics and loss reserve accuracy: evidence from the U.S. property-liability insurance industry Actuarial premium calculation for beekeeping insurance in Turkiye Discretionary decisions in capital requirements under Solvency II Technology investment and insurer efficiency
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1