Pengyu Wang, Xucheng Luo, Wenxin Tai, Kunpeng Zhang, Goce Trajcevski, Fan Zhou
{"title":"Score-based Graph Learning for Urban Flow Prediction","authors":"Pengyu Wang, Xucheng Luo, Wenxin Tai, Kunpeng Zhang, Goce Trajcevski, Fan Zhou","doi":"10.1145/3655629","DOIUrl":null,"url":null,"abstract":"<p>Accurate urban flow prediction (UFP) is crucial for a range of smart city applications such as traffic management, urban planning, and risk assessment. To capture the intrinsic characteristics of urban flow, recent efforts have utilized spatial and temporal graph neural networks (GNNs) to deal with the complex dependence between the traffic in adjacent areas. However, existing GNN-based approaches suffer from several critical drawbacks, including improper graph representation of urban traffic data, lack of semantic correlation modeling among graph nodes, and coarse-grained exploitation of external factors. To address these issues, we propose DiffUFP, a novel probabilistic graph-based framework for urban flow prediction. DiffUFP consists of two key designs: 1) a semantic region dynamic extraction method that effectively captures the underlying traffic network topology; and 2) a conditional denoising score-based adjacency matrix generator that takes spatial, temporal, and external factors into account when constructing the adjacency matrix rather than simply concatenation in existing studies. Extensive experiments conducted on real-world datasets demonstrate the superiority of DiffUFP over the state-of-the-art UFP models and the effect of the two specific modules.</p>","PeriodicalId":48967,"journal":{"name":"ACM Transactions on Intelligent Systems and Technology","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Intelligent Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3655629","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate urban flow prediction (UFP) is crucial for a range of smart city applications such as traffic management, urban planning, and risk assessment. To capture the intrinsic characteristics of urban flow, recent efforts have utilized spatial and temporal graph neural networks (GNNs) to deal with the complex dependence between the traffic in adjacent areas. However, existing GNN-based approaches suffer from several critical drawbacks, including improper graph representation of urban traffic data, lack of semantic correlation modeling among graph nodes, and coarse-grained exploitation of external factors. To address these issues, we propose DiffUFP, a novel probabilistic graph-based framework for urban flow prediction. DiffUFP consists of two key designs: 1) a semantic region dynamic extraction method that effectively captures the underlying traffic network topology; and 2) a conditional denoising score-based adjacency matrix generator that takes spatial, temporal, and external factors into account when constructing the adjacency matrix rather than simply concatenation in existing studies. Extensive experiments conducted on real-world datasets demonstrate the superiority of DiffUFP over the state-of-the-art UFP models and the effect of the two specific modules.
期刊介绍:
ACM Transactions on Intelligent Systems and Technology is a scholarly journal that publishes the highest quality papers on intelligent systems, applicable algorithms and technology with a multi-disciplinary perspective. An intelligent system is one that uses artificial intelligence (AI) techniques to offer important services (e.g., as a component of a larger system) to allow integrated systems to perceive, reason, learn, and act intelligently in the real world.
ACM TIST is published quarterly (six issues a year). Each issue has 8-11 regular papers, with around 20 published journal pages or 10,000 words per paper. Additional references, proofs, graphs or detailed experiment results can be submitted as a separate appendix, while excessively lengthy papers will be rejected automatically. Authors can include online-only appendices for additional content of their published papers and are encouraged to share their code and/or data with other readers.