{"title":"Silicon-Germanium Ultrashort-Gate Transistor Performances by Electrical-Thermal Simulations","authors":"Shiun Yamakiri;Takaya Sugiura;Kenta Yamamura;Yuta Watanabe;Nobuhiko Nakano","doi":"10.1109/TNANO.2024.3389209","DOIUrl":null,"url":null,"abstract":"As a replacement for conventional silicon (Si), the germanium (Ge) materials have attracted interest because Ge provides larger carrier mobility and is advantageous for high-speed switching. In this study, the silicon-germanium (SiGe) ultrashort-gate transistor performances were studied using electrical-thermal analysis. The material properties of SiGe can be modified by regulating the mole fraction in Si\n<inline-formula><tex-math>$_{1-x}$</tex-math></inline-formula>\n Ge\n<inline-formula><tex-math>$_{x}$</tex-math></inline-formula>\n, and the different material characteristics affect the nanoscale transistor performance because channel regulation strongly depends on the bandgap energy. This study aims to reveal the structural and material designs of SiGe transistors to ensure sufficient performance and reliability.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"23 ","pages":"361-367"},"PeriodicalIF":2.1000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10502329/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
As a replacement for conventional silicon (Si), the germanium (Ge) materials have attracted interest because Ge provides larger carrier mobility and is advantageous for high-speed switching. In this study, the silicon-germanium (SiGe) ultrashort-gate transistor performances were studied using electrical-thermal analysis. The material properties of SiGe can be modified by regulating the mole fraction in Si
$_{1-x}$
Ge
$_{x}$
, and the different material characteristics affect the nanoscale transistor performance because channel regulation strongly depends on the bandgap energy. This study aims to reveal the structural and material designs of SiGe transistors to ensure sufficient performance and reliability.
期刊介绍:
The IEEE Transactions on Nanotechnology is devoted to the publication of manuscripts of archival value in the general area of nanotechnology, which is rapidly emerging as one of the fastest growing and most promising new technological developments for the next generation and beyond.