{"title":"Transient computational homogenisation of one-dimensional periodic microstructures","authors":"İrem Yağmuroğlu, Zuhal Ozdemir, Harm Askes","doi":"10.1007/s00466-024-02478-0","DOIUrl":null,"url":null,"abstract":"<p>This paper presents a methodology where a macroscopic linear material response incorporates microscopic variations, such as transient interactions and micro-inertia effects. This is achieved by implementing the temporal coupling between macro and microstructures, along with the spatial coupling, within a dynamic computational homogenisation framework. In the context of dynamic multiscale modelling, the temporal coupling method offers significant advantages by effectively reducing deviations emerging from micro-inertia effects and transient phenomena. The effectiveness of the developed procedure is validated by a comparison of the macroscopic results with the solutions of direct numerical simulation for a one-dimensional periodic laminate bar with different contrast levels. The homogenised results obtained using the developed procedure indicate that a better prediction of the macroscopic requires a larger Representative Volume Element (RVE) which improves the estimation of multiscale strain energy and a larger time window which improves the estimation of multiscale kinetic energy. The simultaneous increase in the RVE size and the time averaging window yields the best results in predicting the macroscopic response.</p>","PeriodicalId":55248,"journal":{"name":"Computational Mechanics","volume":"78 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00466-024-02478-0","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a methodology where a macroscopic linear material response incorporates microscopic variations, such as transient interactions and micro-inertia effects. This is achieved by implementing the temporal coupling between macro and microstructures, along with the spatial coupling, within a dynamic computational homogenisation framework. In the context of dynamic multiscale modelling, the temporal coupling method offers significant advantages by effectively reducing deviations emerging from micro-inertia effects and transient phenomena. The effectiveness of the developed procedure is validated by a comparison of the macroscopic results with the solutions of direct numerical simulation for a one-dimensional periodic laminate bar with different contrast levels. The homogenised results obtained using the developed procedure indicate that a better prediction of the macroscopic requires a larger Representative Volume Element (RVE) which improves the estimation of multiscale strain energy and a larger time window which improves the estimation of multiscale kinetic energy. The simultaneous increase in the RVE size and the time averaging window yields the best results in predicting the macroscopic response.
期刊介绍:
The journal reports original research of scholarly value in computational engineering and sciences. It focuses on areas that involve and enrich the application of mechanics, mathematics and numerical methods. It covers new methods and computationally-challenging technologies.
Areas covered include method development in solid, fluid mechanics and materials simulations with application to biomechanics and mechanics in medicine, multiphysics, fracture mechanics, multiscale mechanics, particle and meshfree methods. Additionally, manuscripts including simulation and method development of synthesis of material systems are encouraged.
Manuscripts reporting results obtained with established methods, unless they involve challenging computations, and manuscripts that report computations using commercial software packages are not encouraged.