{"title":"Quasi-Likelihood Estimation in Volatility Models for Semi-Continuous Time Series","authors":"Šárka Hudecová, Michal Pešta","doi":"10.1111/jtsa.12741","DOIUrl":null,"url":null,"abstract":"<p>Time series containing non-negligible portion of possibly dependent zeros, whereas the remaining observations are positive, are considered. They are regarded as GARCH processes consisting of non-negative values. Our first aim lies in estimation of the omnibus model parameters taking into account the semi-continuous distribution. The hurdle distribution together with dependent zeros cause that the classical GARCH estimation techniques fail. Two different quasi-likelihood approaches are employed. Both estimators are proved to be strongly consistent and asymptotically normal. The second goal consists in the proposed predictions with bootstrap add-ons. The considered class of models can be reformulated as multiplicative error models. The empirical properties are illustrated in a simulation study, which demonstrates computational efficiency of the employed methods. The developed techniques are presented through an actuarial problem concerning insurance claims.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jtsa.12741","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jtsa.12741","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Time series containing non-negligible portion of possibly dependent zeros, whereas the remaining observations are positive, are considered. They are regarded as GARCH processes consisting of non-negative values. Our first aim lies in estimation of the omnibus model parameters taking into account the semi-continuous distribution. The hurdle distribution together with dependent zeros cause that the classical GARCH estimation techniques fail. Two different quasi-likelihood approaches are employed. Both estimators are proved to be strongly consistent and asymptotically normal. The second goal consists in the proposed predictions with bootstrap add-ons. The considered class of models can be reformulated as multiplicative error models. The empirical properties are illustrated in a simulation study, which demonstrates computational efficiency of the employed methods. The developed techniques are presented through an actuarial problem concerning insurance claims.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.