Data-Driven Design of NASICON-Type Electrodes Using Graph-Based Neural Networks

IF 5.1 4区 材料科学 Q2 ELECTROCHEMISTRY Batteries & Supercaps Pub Date : 2024-04-16 DOI:10.1002/batt.202400186
Dr. Yoonsu Shim, Dr. Incheol Jeong, Junpyo Hur, Prof. Dr. Hyoungjeen Jeen, Prof. Dr. Seung-Taek Myung, Prof. Dr. Kang Taek Lee, Prof. Dr. Seungbum Hong, Prof. Dr. Jong Min Yuk, Dr. Chan-Woo Lee
{"title":"Data-Driven Design of NASICON-Type Electrodes Using Graph-Based Neural Networks","authors":"Dr. Yoonsu Shim,&nbsp;Dr. Incheol Jeong,&nbsp;Junpyo Hur,&nbsp;Prof. Dr. Hyoungjeen Jeen,&nbsp;Prof. Dr. Seung-Taek Myung,&nbsp;Prof. Dr. Kang Taek Lee,&nbsp;Prof. Dr. Seungbum Hong,&nbsp;Prof. Dr. Jong Min Yuk,&nbsp;Dr. Chan-Woo Lee","doi":"10.1002/batt.202400186","DOIUrl":null,"url":null,"abstract":"<p>Sodium superionic conductor (NASICON)-type cathode materials are considered promising candidates for high-performance sodium-ion batteries (SIBs) because of the abundance and low cost of raw materials. However, NASICON-type cathodes suffer from low capacities. This limitation can be addressed through the activation of sodium-excess phases, which can enhance capacities up to theoretical values. Thus, this paper proposes the use of transition metal (TM)-substituted Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>2</sub>F<sub>3</sub> (NVPF) to induce sodium-excess phases. To identify suitable doping elements, an inverse design approach is developed, combining machine learning prediction and density functional theory (DFT) calculations. Graph-based neural networks are used to predict two crucial properties, i. e., the structural stability and voltage level. Results indicate that the use of TM-substituted NVPF materials leads to about 150 % capacity enhancement with reduced time and resource requirements compared with the direct design approach. Furthermore, DFT calculations confirm improvements in cyclability, electronic conductivity, and chemical stability. The proposed approach is expected to accelerate the discovery of superior materials for battery electrodes.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"7 10","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202400186","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries & Supercaps","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/batt.202400186","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Sodium superionic conductor (NASICON)-type cathode materials are considered promising candidates for high-performance sodium-ion batteries (SIBs) because of the abundance and low cost of raw materials. However, NASICON-type cathodes suffer from low capacities. This limitation can be addressed through the activation of sodium-excess phases, which can enhance capacities up to theoretical values. Thus, this paper proposes the use of transition metal (TM)-substituted Na3V2(PO4)2F3 (NVPF) to induce sodium-excess phases. To identify suitable doping elements, an inverse design approach is developed, combining machine learning prediction and density functional theory (DFT) calculations. Graph-based neural networks are used to predict two crucial properties, i. e., the structural stability and voltage level. Results indicate that the use of TM-substituted NVPF materials leads to about 150 % capacity enhancement with reduced time and resource requirements compared with the direct design approach. Furthermore, DFT calculations confirm improvements in cyclability, electronic conductivity, and chemical stability. The proposed approach is expected to accelerate the discovery of superior materials for battery electrodes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用基于图形的神经网络,以数据为导向设计 NASICON 型电极
钠超离子导体(NASICON)型阴极材料由于原材料丰富且成本低廉,被认为是高性能钠离子电池(SIB)的理想候选材料。然而,NASICON 型阴极的容量较低。这一限制可以通过活化钠过剩相来解决,活化钠过剩相可以将容量提高到理论值。因此,本文提出使用过渡金属 (TM) 取代的 Na3V2(PO4)2F3 (NVPF) 来诱导钠过剩相。为确定合适的掺杂元素,结合机器学习预测和密度泛函理论(DFT)计算,开发了一种反向设计方法。基于图形的神经网络被用来预测两个关键特性,即结构稳定性和电压水平。结果表明,与直接设计方法相比,使用 TM 取代的 NVPF 材料可将容量提高约 150%,同时减少了时间和资源需求。此外,DFT 计算还证实了可循环性、电子导电性和化学稳定性的改善。所提出的方法有望加速发现电池电极的优质材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.60
自引率
5.30%
发文量
223
期刊介绍: Electrochemical energy storage devices play a transformative role in our societies. They have allowed the emergence of portable electronics devices, have triggered the resurgence of electric transportation and constitute key components in smart power grids. Batteries & Supercaps publishes international high-impact experimental and theoretical research on the fundamentals and applications of electrochemical energy storage. We support the scientific community to advance energy efficiency and sustainability.
期刊最新文献
Cover Picture: Effect of Chloride Ions on the Electrochemical Performance of Magnesium Metal-Organic-Frameworks-Based Semi-Solid Electrolytes (Batteries & Supercaps 1/2025) Cover Feature: The ARTISTIC Battery Manufacturing Digitalization Initiative: From Fundamental Research to Industrialization (Batteries & Supercaps 1/2025) Cover Feature: 3D Ternary Hybrid of VSe2/e-MXene/CNT with a Promising Energy Storage Performance for High Performance Asymmetric Supercapacitor (Batteries & Supercaps 1/2025) Cover Picture: Automated Robotic Cell Fabrication Technology for Stacked-Type Lithium-Oxygen Batteries (Batteries & Supercaps 12/2024) Cover Feature: Li Decorated Graphdiyne Nanosheets: A Theoretical Study for an Electrode Material for Nonaqueous Lithium Batteries (Batteries & Supercaps 12/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1