{"title":"Estimating dynamic treatment regimes for ordinal outcomes with household interference: Application in household smoking cessation","authors":"Cong Jiang, Mary Thompson, Michael Wallace","doi":"10.1177/09622802241242313","DOIUrl":null,"url":null,"abstract":"The focus of precision medicine is on decision support, often in the form of dynamic treatment regimes, which are sequences of decision rules. At each decision point, the decision rules determine the next treatment according to the patient’s baseline characteristics, the information on treatments and responses accrued by that point, and the patient’s current health status, including symptom severity and other measures. However, dynamic treatment regime estimation with ordinal outcomes is rarely studied, and rarer still in the context of interference – where one patient’s treatment may affect another’s outcome. In this paper, we introduce the weighted proportional odds model: a regression based, approximate doubly-robust approach to single-stage dynamic treatment regime estimation for ordinal outcomes. This method also accounts for the possibility of interference between individuals sharing a household through the use of covariate balancing weights derived from joint propensity scores. Examining different types of balancing weights, we verify the approximate double robustness of weighted proportional odds model with our adjusted weights via simulation studies. We further extend weighted proportional odds model to multi-stage dynamic treatment regime estimation with household interference, namely dynamic weighted proportional odds model. Lastly, we demonstrate our proposed methodology in the analysis of longitudinal survey data from the Population Assessment of Tobacco and Health study, which motivates this work. Furthermore, considering interference, we provide optimal treatment strategies for households to achieve smoking cessation of the pair in the household.","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":"4 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methods in Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09622802241242313","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
The focus of precision medicine is on decision support, often in the form of dynamic treatment regimes, which are sequences of decision rules. At each decision point, the decision rules determine the next treatment according to the patient’s baseline characteristics, the information on treatments and responses accrued by that point, and the patient’s current health status, including symptom severity and other measures. However, dynamic treatment regime estimation with ordinal outcomes is rarely studied, and rarer still in the context of interference – where one patient’s treatment may affect another’s outcome. In this paper, we introduce the weighted proportional odds model: a regression based, approximate doubly-robust approach to single-stage dynamic treatment regime estimation for ordinal outcomes. This method also accounts for the possibility of interference between individuals sharing a household through the use of covariate balancing weights derived from joint propensity scores. Examining different types of balancing weights, we verify the approximate double robustness of weighted proportional odds model with our adjusted weights via simulation studies. We further extend weighted proportional odds model to multi-stage dynamic treatment regime estimation with household interference, namely dynamic weighted proportional odds model. Lastly, we demonstrate our proposed methodology in the analysis of longitudinal survey data from the Population Assessment of Tobacco and Health study, which motivates this work. Furthermore, considering interference, we provide optimal treatment strategies for households to achieve smoking cessation of the pair in the household.
期刊介绍:
Statistical Methods in Medical Research is a peer reviewed scholarly journal and is the leading vehicle for articles in all the main areas of medical statistics and an essential reference for all medical statisticians. This unique journal is devoted solely to statistics and medicine and aims to keep professionals abreast of the many powerful statistical techniques now available to the medical profession. This journal is a member of the Committee on Publication Ethics (COPE)