{"title":"Spectroscopic Investigation of Nebular Gas (SING): instrument design, assembly and calibration","authors":"Bharat Chandra P., Binukumar G. Nair, Shubham Jankiram Ghatul, Shubhangi Jain, S. Sriram, Mahesh Babu S., Rekhesh Mohan, Margarita Safonova, Jayant Murthy, Mikhail Sachkov","doi":"10.1007/s10686-024-09937-9","DOIUrl":null,"url":null,"abstract":"<div><p>The Spectroscopic Investigation of Nebular Gas (SING) is a near-ultraviolet (NUV) low-resolution spectrograph payload designed to operate in the NUV range, 1400 Å – 2700 Å, from a stable space platform. SING telescope has a primary aperture of 298 mm, feeding the light to the long-slit UV spectrograph. SING has a field of view (FOV) of <span>\\(1^{\\circ }\\)</span>, achieving a spatial resolution of 1.33 arcminute and spectral resolution of 3.7 Å(<span>\\({R\\sim 600}\\)</span>) at the central wavelength. SING employs a micro-channel plate (MCP) with a CMOS readout-based photon-counting detector. The instrument is designed to observe diffuse sources such as nebulae, supernova remnants, and the interstellar medium (ISM) to understand their chemistry. SING was selected by the United Nations Office for Outer Space Affairs to be hosted on the Chinese Space Station. The instrument will undergo qualification tests as per the launch requirements. In this paper, we describe the hardware design, optomechanical assembly, and calibration of the instrument.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"57 3","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10686-024-09937-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Astronomy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10686-024-09937-9","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The Spectroscopic Investigation of Nebular Gas (SING) is a near-ultraviolet (NUV) low-resolution spectrograph payload designed to operate in the NUV range, 1400 Å – 2700 Å, from a stable space platform. SING telescope has a primary aperture of 298 mm, feeding the light to the long-slit UV spectrograph. SING has a field of view (FOV) of \(1^{\circ }\), achieving a spatial resolution of 1.33 arcminute and spectral resolution of 3.7 Å(\({R\sim 600}\)) at the central wavelength. SING employs a micro-channel plate (MCP) with a CMOS readout-based photon-counting detector. The instrument is designed to observe diffuse sources such as nebulae, supernova remnants, and the interstellar medium (ISM) to understand their chemistry. SING was selected by the United Nations Office for Outer Space Affairs to be hosted on the Chinese Space Station. The instrument will undergo qualification tests as per the launch requirements. In this paper, we describe the hardware design, optomechanical assembly, and calibration of the instrument.
期刊介绍:
Many new instruments for observing astronomical objects at a variety of wavelengths have been and are continually being developed. Furthermore, a vast amount of effort is being put into the development of new techniques for data analysis in order to cope with great streams of data collected by these instruments.
Experimental Astronomy acts as a medium for the publication of papers of contemporary scientific interest on astrophysical instrumentation and methods necessary for the conduct of astronomy at all wavelength fields.
Experimental Astronomy publishes full-length articles, research letters and reviews on developments in detection techniques, instruments, and data analysis and image processing techniques. Occasional special issues are published, giving an in-depth presentation of the instrumentation and/or analysis connected with specific projects, such as satellite experiments or ground-based telescopes, or of specialized techniques.