This paper aims to investigate the tensile creep behavior of PVC flexible composites reinforced with various aramid warp-knitted fabrics (PCRAWF). The tensile creep test of PCRAWF was conducted and the impact of various tissue structure reinforcements on the viscoelastic behavior of PCRAWF was also discussed. Dynamic mechanical analysis (DMA) tests were conducted on PCRAWF to explore the effect of temperature on the creep strain and creep recovery properties of PCRAWF. The variation in viscoelastic properties of PCRAWF with temperature was analyzed. The decomposition behavior of aramid fibers and PVC resins in a nitrogen (N2) atmosphere was analyzed using thermogravimetric analysis (TGA). The experimental results showed that as the density of the reinforcing fabric increases, the creep strain of the corresponding PCRAWF decreases. The amount of creep strain increases as the loading force increases, and the rate of increase gradually decreases. The creep strain of PCRAWF increases as the temperature rises, and the creep recovery decreases with increasing temperature. The creep strain increases by approximately 0.4–1.6% as the temperature rises from 30 °C to 60 °C, and by about 0.2–0.6% as the temperature increases from 60 °C to 90 °C. The TGA results analyzed the thermal degradation temperatures of aramid fiber and PVC composites in N2 to reach 680 °C and 480 °C, respectively. The characterization of tensile creep behavior has significant potential for predicting the long-term performance of fabric-reinforced polyvinyl chloride flexible composites. Based on the experimental results of the creep of PCRAWF, the constitutive Kelvin-Maxwell model was used to establish the constitutive equations with the experimental data for numerical simulation.