Qiu Chen, Pan Luo, Li Liao, Yin Shen, Xiaoshuang Luo, Xinpeng Li, Xuanzhong Wen, Jialin Song, Dr. Bo Yu, Dr. Junchen Chen, Dr. Bingshu Guo, Prof. Mingshan Wang, Prof. Yun Huang, Fuliang Liu, Dr. Jiangtao Liu, Zhedong Li, Jingrun Ma, Shuiyong Wang, Prof. Xing Li
{"title":"Regulating Diffusion Coefficient of Li+ by High Binding Energy Anion towards Ultra-Low Temperature Lithium-Ion Batteries","authors":"Qiu Chen, Pan Luo, Li Liao, Yin Shen, Xiaoshuang Luo, Xinpeng Li, Xuanzhong Wen, Jialin Song, Dr. Bo Yu, Dr. Junchen Chen, Dr. Bingshu Guo, Prof. Mingshan Wang, Prof. Yun Huang, Fuliang Liu, Dr. Jiangtao Liu, Zhedong Li, Jingrun Ma, Shuiyong Wang, Prof. Xing Li","doi":"10.1002/batt.202400246","DOIUrl":null,"url":null,"abstract":"<p>Electrolyte design is the optimal strategy to achieve extremely low temperature operation of lithium-ion batteries. Here, the diffusion coefficient of Li<sup>+</sup> is proposed to improve the ion transport kinetics at low temperatures. The diffusion coefficient of Li<sup>+</sup> is improved by constructing a Li<sup>+</sup> solvation sheath with weak steric effects. Specifically, high binding energy BF<sub>4</sub><sup>−</sup> anions are added to a 1 M LiPF<sub>6</sub> in propyl acetate (<b>PA</b>) electrolyte. Since the binding energy of Li<sup>+</sup> with BF<sub>4</sub><sup>−</sup> is greater than that of PA. Therefore, the small-sized BF<sub>4</sub><sup>−</sup> replaces the large-sized PA molecule to form a Li<sup>+</sup> solvation sheath with a weak steric effect, which increases the diffusion coefficient of Li<sup>+</sup>. Using the high diffusion coefficient electrolyte, the 800 mAh pouch cell retain 91 % and 75 % of its room temperature capacity at −40 °C(0.5 C rate) and −60 °C (0.2 C rate), respectively. And it also shows stable cycling at −40 °C. This work provides a new strategy for designing low-temperature electrolytes of lithium-ion batteries.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"7 11","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries & Supercaps","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/batt.202400246","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Electrolyte design is the optimal strategy to achieve extremely low temperature operation of lithium-ion batteries. Here, the diffusion coefficient of Li+ is proposed to improve the ion transport kinetics at low temperatures. The diffusion coefficient of Li+ is improved by constructing a Li+ solvation sheath with weak steric effects. Specifically, high binding energy BF4− anions are added to a 1 M LiPF6 in propyl acetate (PA) electrolyte. Since the binding energy of Li+ with BF4− is greater than that of PA. Therefore, the small-sized BF4− replaces the large-sized PA molecule to form a Li+ solvation sheath with a weak steric effect, which increases the diffusion coefficient of Li+. Using the high diffusion coefficient electrolyte, the 800 mAh pouch cell retain 91 % and 75 % of its room temperature capacity at −40 °C(0.5 C rate) and −60 °C (0.2 C rate), respectively. And it also shows stable cycling at −40 °C. This work provides a new strategy for designing low-temperature electrolytes of lithium-ion batteries.
期刊介绍:
Electrochemical energy storage devices play a transformative role in our societies. They have allowed the emergence of portable electronics devices, have triggered the resurgence of electric transportation and constitute key components in smart power grids. Batteries & Supercaps publishes international high-impact experimental and theoretical research on the fundamentals and applications of electrochemical energy storage. We support the scientific community to advance energy efficiency and sustainability.