Cover Picture: Enhancing the Supercapacitive Behaviour of Cobalt Layered Hydroxides by 3D Structuring and Halide Substitution (Batteries & Supercaps 11/2024)
{"title":"Cover Picture: Enhancing the Supercapacitive Behaviour of Cobalt Layered Hydroxides by 3D Structuring and Halide Substitution (Batteries & Supercaps 11/2024)","authors":"Álvaro Seijas-Da Silva, Víctor Oestreicher, Cristián Huck-Iriart, Martín Mizrahi, Diego Hunt, Valeria Ferrari, Gonzalo Abellán","doi":"10.1002/batt.202481101","DOIUrl":null,"url":null,"abstract":"<p><b>The Front Cover</b> illustrates the advantages in the supercapacitive behaviour of cobalt-layered hydroxides achieved through 3D structuring and halide substitution. The 3D flower-like morphology of α-Co hydroxyhalides significantly enhances their electrochemical performance compared to the hexagonal structure. By substituting chloride with iodide, the capacitive behaviour is further improved by over 40 %, thereby showcasing the critical role of halides in modulating electronic properties. This achievement makes these materials promising candidates for energy storage. More information can be found in the Research Article by V. Oestreicher, G. Abellán and co-workers (DOI: 10.1002/batt.202400335).\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure>\n </p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"7 11","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202481101","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries & Supercaps","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/batt.202481101","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
The Front Cover illustrates the advantages in the supercapacitive behaviour of cobalt-layered hydroxides achieved through 3D structuring and halide substitution. The 3D flower-like morphology of α-Co hydroxyhalides significantly enhances their electrochemical performance compared to the hexagonal structure. By substituting chloride with iodide, the capacitive behaviour is further improved by over 40 %, thereby showcasing the critical role of halides in modulating electronic properties. This achievement makes these materials promising candidates for energy storage. More information can be found in the Research Article by V. Oestreicher, G. Abellán and co-workers (DOI: 10.1002/batt.202400335).
期刊介绍:
Electrochemical energy storage devices play a transformative role in our societies. They have allowed the emergence of portable electronics devices, have triggered the resurgence of electric transportation and constitute key components in smart power grids. Batteries & Supercaps publishes international high-impact experimental and theoretical research on the fundamentals and applications of electrochemical energy storage. We support the scientific community to advance energy efficiency and sustainability.