Microenvironment of Landfill-Mined Soil-Like Fractions (LMSF): Evaluating the Polymer Composting Potential Using Metagenomics and Geoenvironmental Characterization
Arnab Banerjee, Charakho N. Chah, Manoj Kumar Dhal, Kshitij Madhu, Kiran Vilas Dhobale, Bharat Rattan, Vimal Katiyar, Sreedeep Sekharan
{"title":"Microenvironment of Landfill-Mined Soil-Like Fractions (LMSF): Evaluating the Polymer Composting Potential Using Metagenomics and Geoenvironmental Characterization","authors":"Arnab Banerjee, Charakho N. Chah, Manoj Kumar Dhal, Kshitij Madhu, Kiran Vilas Dhobale, Bharat Rattan, Vimal Katiyar, Sreedeep Sekharan","doi":"10.1007/s41742-024-00598-2","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The search for potent plastic-degrading bacteria has been a focal point of research over the recent decades to develop sustainable methods for plastic waste management. Despite promising results at the laboratory scale, replicating the same at the field scale has been limited. Natural extremophilic conditions of the landfill host many plastic-degrading bacteria, and recently, culture-independent Next-Generation Sequencing metagenomics approaches are being adopted to screen them and exploit their utilities. However, one of the main challenges is the difficulty in designing the optimum artificial test conditions for understanding the growth and metabolic activities of the concerned microorganisms. In the current study using precision metagenomics, genes coding for PET and PHA degrading enzymes were screened from a landfill-mined soil-like fraction (LMSF) sample, with landfill soil under a freshly deposited waste dump acting as the control. Subsequently, thorough geoenvironmental characterization of the samples was performed to generate an understanding of the growth conditions of the microorganisms. Genes encoding for MHETase outpopulated the genes encoding for PETase in LMSF, while the reverse trend was observed in the control. The abundance and taxonomic distribution of the hosts containing genes of PETase and MHETase enzymes in the samples, when co-related with the FTIR spectra of the samples, indicated that the PET residues might have possibly degraded to MHET under natural conditions. Usually, commercial composts, which are already a market-ready product for the agriculture sector, are used for polymer composting, which is not sustainable in the long run. The structural and functional patterns of the microbes obtained in the metagenomics study and permissible levels of leachable heavy metals generate promise for the landfill-mined soil-like fractions to be potentially used for polymer degradation. Alongside this, the presence of a monotypic oceanic genus Plesiocystis in the landfill environment was confirmed, which is of utmost importance to the field of microbial ecology.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":14121,"journal":{"name":"International Journal of Environmental Research","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s41742-024-00598-2","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The search for potent plastic-degrading bacteria has been a focal point of research over the recent decades to develop sustainable methods for plastic waste management. Despite promising results at the laboratory scale, replicating the same at the field scale has been limited. Natural extremophilic conditions of the landfill host many plastic-degrading bacteria, and recently, culture-independent Next-Generation Sequencing metagenomics approaches are being adopted to screen them and exploit their utilities. However, one of the main challenges is the difficulty in designing the optimum artificial test conditions for understanding the growth and metabolic activities of the concerned microorganisms. In the current study using precision metagenomics, genes coding for PET and PHA degrading enzymes were screened from a landfill-mined soil-like fraction (LMSF) sample, with landfill soil under a freshly deposited waste dump acting as the control. Subsequently, thorough geoenvironmental characterization of the samples was performed to generate an understanding of the growth conditions of the microorganisms. Genes encoding for MHETase outpopulated the genes encoding for PETase in LMSF, while the reverse trend was observed in the control. The abundance and taxonomic distribution of the hosts containing genes of PETase and MHETase enzymes in the samples, when co-related with the FTIR spectra of the samples, indicated that the PET residues might have possibly degraded to MHET under natural conditions. Usually, commercial composts, which are already a market-ready product for the agriculture sector, are used for polymer composting, which is not sustainable in the long run. The structural and functional patterns of the microbes obtained in the metagenomics study and permissible levels of leachable heavy metals generate promise for the landfill-mined soil-like fractions to be potentially used for polymer degradation. Alongside this, the presence of a monotypic oceanic genus Plesiocystis in the landfill environment was confirmed, which is of utmost importance to the field of microbial ecology.
期刊介绍:
International Journal of Environmental Research is a multidisciplinary journal concerned with all aspects of environment. In pursuit of these, environmentalist disciplines are invited to contribute their knowledge and experience. International Journal of Environmental Research publishes original research papers, research notes and reviews across the broad field of environment. These include but are not limited to environmental science, environmental engineering, environmental management and planning and environmental design, urban and regional landscape design and natural disaster management. Thus high quality research papers or reviews dealing with any aspect of environment are welcomed. Papers may be theoretical, interpretative or experimental.