Theoretical and simulation-based assessment of electrically doped junctionless TFET with metal-strip and hetero-material considering interface trap charges

IF 1.6 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Microelectronics Reliability Pub Date : 2024-04-21 DOI:10.1016/j.microrel.2024.115393
Bandi Venkata Chandan, Kaushal Kumar Nigam
{"title":"Theoretical and simulation-based assessment of electrically doped junctionless TFET with metal-strip and hetero-material considering interface trap charges","authors":"Bandi Venkata Chandan,&nbsp;Kaushal Kumar Nigam","doi":"10.1016/j.microrel.2024.115393","DOIUrl":null,"url":null,"abstract":"<div><p>The fabrication complexity, ambipolar current conduction (<span><math><msub><mrow><mi>I</mi></mrow><mrow><mi>a</mi><mi>m</mi><mi>b</mi><mi>i</mi></mrow></msub></math></span>), inferior ON-state current (<span><math><msub><mrow><mi>I</mi></mrow><mrow><mi>o</mi><mi>n</mi></mrow></msub></math></span>), and poor analog/RF performance are major limitations of conventional tunnel field-effect transistors (TFETs). To address these challenges, we propose a novel approach utilizing hetero-material (HM) and metal-strip (MS) technology to develop an electrically doped junctionless TFET (HM-MS-ED-JL-TFET). Utilizing work function engineering (4.72 eV) at the control gate (CG) establishes an intrinsic region along the channel, while a combination of work function engineering (4.72 eV) and a polarity bias (electrically doped) of PG = -1.2 V at the polarity gate (PG) induces a <span><math><msup><mrow><mi>P</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span> region across the source, forming an <span><math><msup><mrow><mi>N</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span>-i-<span><math><msup><mrow><mi>P</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span> structure over the thin <span><math><msup><mrow><mi>N</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span>-<span><math><msup><mrow><mi>N</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span>-<span><math><msup><mrow><mi>N</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span> silicon body. This approach effectively mitigates concerns regarding random dopant fluctuations (RDF) without necessitating a thermal budget, streamlining fabrication compared to conventional TFETs. Furthermore, the integration of hetero-material into the source region narrows the tunneling barrier width, enhancing band-to-band tunneling at the source-channel interface and improving critical metrics such as ON-state current (<span><math><msub><mrow><mi>I</mi></mrow><mrow><mi>o</mi><mi>n</mi></mrow></msub></math></span>), subthreshold slope (SS), transconductance (<span><math><msub><mrow><mi>g</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span>), and cut-off frequency (<span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>T</mi></mrow></msub></math></span>). Concurrently, the inclusion of a metal strip at the drain-channel region raises the energy band and suppresses the ambipolar current. To optimize device performance, a comprehensive optimization phase involving material selection, length, and work function tuning of the metal strip is incorporated. Additionally, reliability concerns arising from interface trap charges (ITCs) at the oxide-semiconductor interface during fabrication are investigated. Through extensive simulations utilizing the Silvaco ATLAS device simulator, we demonstrate the enhanced immunity of the HM-MS-ED-JLTFET to various ITCs, rendering it more reliable for ultra-low-power and high-frequency applications compared to conventional counterparts like ED-JLTFET and MS-ED-JLTFET.</p></div>","PeriodicalId":51131,"journal":{"name":"Microelectronics Reliability","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronics Reliability","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0026271424000738","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The fabrication complexity, ambipolar current conduction (Iambi), inferior ON-state current (Ion), and poor analog/RF performance are major limitations of conventional tunnel field-effect transistors (TFETs). To address these challenges, we propose a novel approach utilizing hetero-material (HM) and metal-strip (MS) technology to develop an electrically doped junctionless TFET (HM-MS-ED-JL-TFET). Utilizing work function engineering (4.72 eV) at the control gate (CG) establishes an intrinsic region along the channel, while a combination of work function engineering (4.72 eV) and a polarity bias (electrically doped) of PG = -1.2 V at the polarity gate (PG) induces a P+ region across the source, forming an N+-i-P+ structure over the thin N+-N+-N+ silicon body. This approach effectively mitigates concerns regarding random dopant fluctuations (RDF) without necessitating a thermal budget, streamlining fabrication compared to conventional TFETs. Furthermore, the integration of hetero-material into the source region narrows the tunneling barrier width, enhancing band-to-band tunneling at the source-channel interface and improving critical metrics such as ON-state current (Ion), subthreshold slope (SS), transconductance (gm), and cut-off frequency (fT). Concurrently, the inclusion of a metal strip at the drain-channel region raises the energy band and suppresses the ambipolar current. To optimize device performance, a comprehensive optimization phase involving material selection, length, and work function tuning of the metal strip is incorporated. Additionally, reliability concerns arising from interface trap charges (ITCs) at the oxide-semiconductor interface during fabrication are investigated. Through extensive simulations utilizing the Silvaco ATLAS device simulator, we demonstrate the enhanced immunity of the HM-MS-ED-JLTFET to various ITCs, rendering it more reliable for ultra-low-power and high-frequency applications compared to conventional counterparts like ED-JLTFET and MS-ED-JLTFET.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
考虑界面陷阱电荷的掺电无结 TFET(带金属带和异质材料)的理论和仿真评估
传统隧道场效应晶体管(TFET)的主要局限在于制造复杂性、极性电流传导(Iambi)、导通状态电流(Ion)较差以及模拟/射频性能较差。为了应对这些挑战,我们提出了一种利用异质材料 (HM) 和金属带 (MS) 技术开发无电掺杂结 TFET(HM-MS-ED-JL-TFET)的新方法。在控制栅(CG)上利用功函数工程(4.72 eV)沿着沟道建立了一个本征区,而在极性栅(PG)上结合功函数工程(4.72 eV)和 PG = -1.2 V 的极性偏置(电掺杂),在源极上形成了一个 P+ 区,在薄 N+-N+-N+ 硅体上形成了一个 N+-i-P+ 结构。与传统的 TFET 相比,这种方法能有效缓解随机掺杂波动 (RDF) 的问题,而无需热预算,从而简化了制造过程。此外,将异质材料集成到源极区可缩小隧道势垒宽度,增强源极-沟道界面的带间隧道效应,改善导通态电流 (Ion)、亚阈值斜率 (SS)、跨导 (gm) 和截止频率 (fT) 等关键指标。同时,在漏极沟道区加入金属带可提高能带并抑制伏极性电流。为了优化器件性能,在器件的全面优化阶段,对金属带进行了材料选择、长度和功函数调整。此外,还对制造过程中氧化物-半导体界面陷阱电荷(ITC)引起的可靠性问题进行了研究。通过利用 Silvaco ATLAS 器件模拟器进行大量模拟,我们证明了 HM-MS-ED-JLTFET 对各种 ITC 的抗扰性增强,因此与 ED-JLTFET 和 MS-ED-JLTFET 等传统同类器件相比,它在超低功率和高频应用中更加可靠。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Microelectronics Reliability
Microelectronics Reliability 工程技术-工程:电子与电气
CiteScore
3.30
自引率
12.50%
发文量
342
审稿时长
68 days
期刊介绍: Microelectronics Reliability, is dedicated to disseminating the latest research results and related information on the reliability of microelectronic devices, circuits and systems, from materials, process and manufacturing, to design, testing and operation. The coverage of the journal includes the following topics: measurement, understanding and analysis; evaluation and prediction; modelling and simulation; methodologies and mitigation. Papers which combine reliability with other important areas of microelectronics engineering, such as design, fabrication, integration, testing, and field operation will also be welcome, and practical papers reporting case studies in the field and specific application domains are particularly encouraged. Most accepted papers will be published as Research Papers, describing significant advances and completed work. Papers reviewing important developing topics of general interest may be accepted for publication as Review Papers. Urgent communications of a more preliminary nature and short reports on completed practical work of current interest may be considered for publication as Research Notes. All contributions are subject to peer review by leading experts in the field.
期刊最新文献
Modeling of HCI effect in nFinFET for circuit reliability simulation Signal integrity and heat transfer performance of through-boron nitride via A comprehensive investigation of total ionizing dose effects on bulk FinFETs through TCAD simulation Solder joints stress analysis and optimization of chip component under shear and tensile load based on orthogonal experimental design and gray correlation analysis Effects of different air gaps of underfill encapsulant on multi-stack printed circuit board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1