Jun Hu;Shuo Yang;Raquel Caballero-Águila;Hongli Dong;Boying Wu
{"title":"Mixed Static-Dynamic Protocol-Based Tobit Recursive Filtering for Stochastic Nonlinear Systems Against Random False Data Injection Attacks","authors":"Jun Hu;Shuo Yang;Raquel Caballero-Águila;Hongli Dong;Boying Wu","doi":"10.1109/TSIPN.2024.3388953","DOIUrl":null,"url":null,"abstract":"In this paper, the Tobit recursive filtering (TRF) issue is discussed for a class of time-varying stochastic nonlinear systems (SNSs) with censored measurements and random false data injection attacks (FDIAs) under the mixed static-dynamic protocol. The censored measurements considered are depicted by the Tobit Type I model and the phenomenon of the random FDIAs involved is governed by a set of Bernoulli random variables. Additionally, in order to reduce the communication burden and improve the data utilization efficiency, the mixed static-dynamic protocol is elaborately adopted to schedule the signal transmission, which is managed by the time-triggered and event-triggered rules to further increase the flexibility of the data scheduling. The main goal of this paper is to present a new TRF approach such that, in the presence of censored measurements, mixed static-dynamic protocol and random FDIAs, a minimized upper bound of the filtering error covariance (FEC) can be obtained. Moreover, a sufficient criterion from the theoretical analysis perspective is established to guarantee the desired uniform boundedness of the filtering error in the mean-square sense (MSS). Finally, some experiments with comparisons applicable for three-wheeled Ackerman turning model are conducted to show the applicability and advantages of newly proposed TRF scheme.","PeriodicalId":56268,"journal":{"name":"IEEE Transactions on Signal and Information Processing over Networks","volume":"10 ","pages":"445-459"},"PeriodicalIF":3.0000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal and Information Processing over Networks","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10506531/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, the Tobit recursive filtering (TRF) issue is discussed for a class of time-varying stochastic nonlinear systems (SNSs) with censored measurements and random false data injection attacks (FDIAs) under the mixed static-dynamic protocol. The censored measurements considered are depicted by the Tobit Type I model and the phenomenon of the random FDIAs involved is governed by a set of Bernoulli random variables. Additionally, in order to reduce the communication burden and improve the data utilization efficiency, the mixed static-dynamic protocol is elaborately adopted to schedule the signal transmission, which is managed by the time-triggered and event-triggered rules to further increase the flexibility of the data scheduling. The main goal of this paper is to present a new TRF approach such that, in the presence of censored measurements, mixed static-dynamic protocol and random FDIAs, a minimized upper bound of the filtering error covariance (FEC) can be obtained. Moreover, a sufficient criterion from the theoretical analysis perspective is established to guarantee the desired uniform boundedness of the filtering error in the mean-square sense (MSS). Finally, some experiments with comparisons applicable for three-wheeled Ackerman turning model are conducted to show the applicability and advantages of newly proposed TRF scheme.
期刊介绍:
The IEEE Transactions on Signal and Information Processing over Networks publishes high-quality papers that extend the classical notions of processing of signals defined over vector spaces (e.g. time and space) to processing of signals and information (data) defined over networks, potentially dynamically varying. In signal processing over networks, the topology of the network may define structural relationships in the data, or may constrain processing of the data. Topics include distributed algorithms for filtering, detection, estimation, adaptation and learning, model selection, data fusion, and diffusion or evolution of information over such networks, and applications of distributed signal processing.