ASIC design of power and area efficient programmable FIR filter using optimized Urdhva-Tiryagbhyam Multiplier for impedance cardiography

IF 1.9 4区 计算机科学 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Microprocessors and Microsystems Pub Date : 2024-04-05 DOI:10.1016/j.micpro.2024.105048
Sudhanshu Janwadkar, Rasika Dhavse
{"title":"ASIC design of power and area efficient programmable FIR filter using optimized Urdhva-Tiryagbhyam Multiplier for impedance cardiography","authors":"Sudhanshu Janwadkar,&nbsp;Rasika Dhavse","doi":"10.1016/j.micpro.2024.105048","DOIUrl":null,"url":null,"abstract":"<div><p>Impedance cardiography (ICG) is a rapidly growing non-invasive cardiac health monitoring approach. Synchronous detection of ICG requires an FIR filter to remove the high-frequency carrier signal. Low power consumption and compact area are critical considerations in the design of portable biomedical systems. This paper proposes a novel product quantization-based optimization strategy for the Urdhva Tiryagbhyam Sutra-based multiplier architecture. This paper presents an ASIC design of a low-power and low-area 64th-order programmable FIR filter architecture using the optimized Urdhva Tiryagbhyam Multiplier. The programmable architecture empowers medical practitioners to select the carrier frequency at which the ICG analysis will be performed. The elimination of redundant multipliers from the design based on the filter coefficients is demonstrated. The programmable Vedic FIR filter architecture (described in VHDL) is implemented on the Basys-3 FPGA board for rapid prototyping. The RTL-to-GDSII flow has been completed using Cadence digital design and sign-off tools for the SCL-180 nm technology. The results indicate that the proposed filter architecture occupies 41.33% less area and 42.16% lower power consumption than the contemporary designs described in the literature.</p></div>","PeriodicalId":49815,"journal":{"name":"Microprocessors and Microsystems","volume":"107 ","pages":"Article 105048"},"PeriodicalIF":1.9000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microprocessors and Microsystems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141933124000437","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Impedance cardiography (ICG) is a rapidly growing non-invasive cardiac health monitoring approach. Synchronous detection of ICG requires an FIR filter to remove the high-frequency carrier signal. Low power consumption and compact area are critical considerations in the design of portable biomedical systems. This paper proposes a novel product quantization-based optimization strategy for the Urdhva Tiryagbhyam Sutra-based multiplier architecture. This paper presents an ASIC design of a low-power and low-area 64th-order programmable FIR filter architecture using the optimized Urdhva Tiryagbhyam Multiplier. The programmable architecture empowers medical practitioners to select the carrier frequency at which the ICG analysis will be performed. The elimination of redundant multipliers from the design based on the filter coefficients is demonstrated. The programmable Vedic FIR filter architecture (described in VHDL) is implemented on the Basys-3 FPGA board for rapid prototyping. The RTL-to-GDSII flow has been completed using Cadence digital design and sign-off tools for the SCL-180 nm technology. The results indicate that the proposed filter architecture occupies 41.33% less area and 42.16% lower power consumption than the contemporary designs described in the literature.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用优化的 Urdhva-Tiryagbhyam 乘法器为阻抗心动图设计功耗和面积效率高的可编程 FIR 滤波器 ASIC
阻抗心电图(ICG)是一种快速发展的无创心脏健康监测方法。ICG 的同步检测需要一个 FIR 滤波器来去除高频载波信号。在设计便携式生物医学系统时,低功耗和小面积是关键的考虑因素。本文针对基于 Urdhva Tiryagbhyam Sutra 的乘法器架构提出了一种基于乘积量化的新型优化策略。本文介绍了一种使用优化后的 Urdhva Tiryagbhyam 乘法器的低功耗、低面积 64 阶可编程 FIR 滤波器架构的 ASIC 设计。这种可编程架构使医疗从业人员能够选择进行 ICG 分析的载波频率。设计中根据滤波器系数消除了多余的乘法器。可编程吠陀 FIR 滤波器架构(用 VHDL 描述)是在 Basys-3 FPGA 板上实现的,用于快速原型开发。采用 SCL-180 nm 技术的 Cadence 数字设计和签核工具完成了 RTL 到 GDSII 流程。结果表明,与文献中描述的当代设计相比,拟议的滤波器架构所占面积减少了 41.33%,功耗降低了 42.16%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Microprocessors and Microsystems
Microprocessors and Microsystems 工程技术-工程:电子与电气
CiteScore
6.90
自引率
3.80%
发文量
204
审稿时长
172 days
期刊介绍: Microprocessors and Microsystems: Embedded Hardware Design (MICPRO) is a journal covering all design and architectural aspects related to embedded systems hardware. This includes different embedded system hardware platforms ranging from custom hardware via reconfigurable systems and application specific processors to general purpose embedded processors. Special emphasis is put on novel complex embedded architectures, such as systems on chip (SoC), systems on a programmable/reconfigurable chip (SoPC) and multi-processor systems on a chip (MPSoC), as well as, their memory and communication methods and structures, such as network-on-chip (NoC). Design automation of such systems including methodologies, techniques, flows and tools for their design, as well as, novel designs of hardware components fall within the scope of this journal. Novel cyber-physical applications that use embedded systems are also central in this journal. While software is not in the main focus of this journal, methods of hardware/software co-design, as well as, application restructuring and mapping to embedded hardware platforms, that consider interplay between software and hardware components with emphasis on hardware, are also in the journal scope.
期刊最新文献
Editorial Board Algorithms for scheduling CNNs on multicore MCUs at the neuron and layer levels Low-cost constant time signed digit selection for most significant bit first multiplication An adaptive binary classifier for highly imbalanced datasets on the Edge Quality-driven design of deep neural network hardware accelerators for low power CPS and IoT applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1