{"title":"Bayesian estimation of large-scale simulation models with Gaussian process regression surrogates","authors":"Sylvain Barde","doi":"10.1016/j.csda.2024.107972","DOIUrl":null,"url":null,"abstract":"<div><p>Large scale, computationally expensive simulation models pose a particular challenge when it comes to estimating their parameters from empirical data. Most simulation models do not possess closed-form expressions for their likelihood function, requiring the use of simulation-based inference, such as simulated method of moments, indirect inference, likelihood-free inference or approximate Bayesian computation. However, given the high computational requirements of large-scale models, it is often difficult to run these estimation methods, as they require more simulated runs that can feasibly be carried out. The aim is to address the problem by providing a full Bayesian estimation framework where the true but intractable likelihood function of the simulation model is replaced by one generated by a surrogate model trained on the limited simulated data. This is provided by a Linear Model of Coregionalization, where each latent variable is a sparse variational Gaussian process, chosen for its desirable convergence and consistency properties. The effectiveness of the approach is tested using both a simulated Bayesian computing analysis on a known data generating process, and an empirical application in which the free parameters of a computationally demanding agent-based model are estimated on US macroeconomic data.</p></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"196 ","pages":"Article 107972"},"PeriodicalIF":1.5000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167947324000562/pdfft?md5=b53b8e5e84e9796eca1b2069b126ea59&pid=1-s2.0-S0167947324000562-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics & Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167947324000562","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Large scale, computationally expensive simulation models pose a particular challenge when it comes to estimating their parameters from empirical data. Most simulation models do not possess closed-form expressions for their likelihood function, requiring the use of simulation-based inference, such as simulated method of moments, indirect inference, likelihood-free inference or approximate Bayesian computation. However, given the high computational requirements of large-scale models, it is often difficult to run these estimation methods, as they require more simulated runs that can feasibly be carried out. The aim is to address the problem by providing a full Bayesian estimation framework where the true but intractable likelihood function of the simulation model is replaced by one generated by a surrogate model trained on the limited simulated data. This is provided by a Linear Model of Coregionalization, where each latent variable is a sparse variational Gaussian process, chosen for its desirable convergence and consistency properties. The effectiveness of the approach is tested using both a simulated Bayesian computing analysis on a known data generating process, and an empirical application in which the free parameters of a computationally demanding agent-based model are estimated on US macroeconomic data.
期刊介绍:
Computational Statistics and Data Analysis (CSDA), an Official Publication of the network Computational and Methodological Statistics (CMStatistics) and of the International Association for Statistical Computing (IASC), is an international journal dedicated to the dissemination of methodological research and applications in the areas of computational statistics and data analysis. The journal consists of four refereed sections which are divided into the following subject areas:
I) Computational Statistics - Manuscripts dealing with: 1) the explicit impact of computers on statistical methodology (e.g., Bayesian computing, bioinformatics,computer graphics, computer intensive inferential methods, data exploration, data mining, expert systems, heuristics, knowledge based systems, machine learning, neural networks, numerical and optimization methods, parallel computing, statistical databases, statistical systems), and 2) the development, evaluation and validation of statistical software and algorithms. Software and algorithms can be submitted with manuscripts and will be stored together with the online article.
II) Statistical Methodology for Data Analysis - Manuscripts dealing with novel and original data analytical strategies and methodologies applied in biostatistics (design and analytic methods for clinical trials, epidemiological studies, statistical genetics, or genetic/environmental interactions), chemometrics, classification, data exploration, density estimation, design of experiments, environmetrics, education, image analysis, marketing, model free data exploration, pattern recognition, psychometrics, statistical physics, image processing, robust procedures.
[...]
III) Special Applications - [...]
IV) Annals of Statistical Data Science [...]