Bayesian estimation of large-scale simulation models with Gaussian process regression surrogates

IF 1.5 3区 数学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computational Statistics & Data Analysis Pub Date : 2024-04-23 DOI:10.1016/j.csda.2024.107972
Sylvain Barde
{"title":"Bayesian estimation of large-scale simulation models with Gaussian process regression surrogates","authors":"Sylvain Barde","doi":"10.1016/j.csda.2024.107972","DOIUrl":null,"url":null,"abstract":"<div><p>Large scale, computationally expensive simulation models pose a particular challenge when it comes to estimating their parameters from empirical data. Most simulation models do not possess closed-form expressions for their likelihood function, requiring the use of simulation-based inference, such as simulated method of moments, indirect inference, likelihood-free inference or approximate Bayesian computation. However, given the high computational requirements of large-scale models, it is often difficult to run these estimation methods, as they require more simulated runs that can feasibly be carried out. The aim is to address the problem by providing a full Bayesian estimation framework where the true but intractable likelihood function of the simulation model is replaced by one generated by a surrogate model trained on the limited simulated data. This is provided by a Linear Model of Coregionalization, where each latent variable is a sparse variational Gaussian process, chosen for its desirable convergence and consistency properties. The effectiveness of the approach is tested using both a simulated Bayesian computing analysis on a known data generating process, and an empirical application in which the free parameters of a computationally demanding agent-based model are estimated on US macroeconomic data.</p></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"196 ","pages":"Article 107972"},"PeriodicalIF":1.5000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167947324000562/pdfft?md5=b53b8e5e84e9796eca1b2069b126ea59&pid=1-s2.0-S0167947324000562-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics & Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167947324000562","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Large scale, computationally expensive simulation models pose a particular challenge when it comes to estimating their parameters from empirical data. Most simulation models do not possess closed-form expressions for their likelihood function, requiring the use of simulation-based inference, such as simulated method of moments, indirect inference, likelihood-free inference or approximate Bayesian computation. However, given the high computational requirements of large-scale models, it is often difficult to run these estimation methods, as they require more simulated runs that can feasibly be carried out. The aim is to address the problem by providing a full Bayesian estimation framework where the true but intractable likelihood function of the simulation model is replaced by one generated by a surrogate model trained on the limited simulated data. This is provided by a Linear Model of Coregionalization, where each latent variable is a sparse variational Gaussian process, chosen for its desirable convergence and consistency properties. The effectiveness of the approach is tested using both a simulated Bayesian computing analysis on a known data generating process, and an empirical application in which the free parameters of a computationally demanding agent-based model are estimated on US macroeconomic data.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用高斯过程回归代理对大规模仿真模型进行贝叶斯估计
大规模、计算成本高昂的仿真模型在从经验数据中估计其参数时提出了特别的挑战。大多数仿真模型的似然函数不具备闭式表达式,这就需要使用基于仿真的推断方法,如模拟矩法、间接推断、无似然推断或近似贝叶斯计算。然而,由于大规模模型的计算要求很高,这些估计方法往往难以运行,因为它们需要更多的模拟运行,而这是不可能实现的。我们的目标是通过提供一个完整的贝叶斯估计框架来解决这个问题,在这个框架中,模拟模型的真实但难以处理的似然函数被一个在有限的模拟数据上训练过的代理模型所生成的函数所取代。该模型由核心区域化线性模型提供,其中每个潜变量都是一个稀疏的变分高斯过程,该过程具有理想的收敛性和一致性。通过对已知数据生成过程的模拟贝叶斯计算分析,以及在美国宏观经济数据上估算计算要求较高的代理模型自由参数的经验应用,对该方法的有效性进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computational Statistics & Data Analysis
Computational Statistics & Data Analysis 数学-计算机:跨学科应用
CiteScore
3.70
自引率
5.60%
发文量
167
审稿时长
60 days
期刊介绍: Computational Statistics and Data Analysis (CSDA), an Official Publication of the network Computational and Methodological Statistics (CMStatistics) and of the International Association for Statistical Computing (IASC), is an international journal dedicated to the dissemination of methodological research and applications in the areas of computational statistics and data analysis. The journal consists of four refereed sections which are divided into the following subject areas: I) Computational Statistics - Manuscripts dealing with: 1) the explicit impact of computers on statistical methodology (e.g., Bayesian computing, bioinformatics,computer graphics, computer intensive inferential methods, data exploration, data mining, expert systems, heuristics, knowledge based systems, machine learning, neural networks, numerical and optimization methods, parallel computing, statistical databases, statistical systems), and 2) the development, evaluation and validation of statistical software and algorithms. Software and algorithms can be submitted with manuscripts and will be stored together with the online article. II) Statistical Methodology for Data Analysis - Manuscripts dealing with novel and original data analytical strategies and methodologies applied in biostatistics (design and analytic methods for clinical trials, epidemiological studies, statistical genetics, or genetic/environmental interactions), chemometrics, classification, data exploration, density estimation, design of experiments, environmetrics, education, image analysis, marketing, model free data exploration, pattern recognition, psychometrics, statistical physics, image processing, robust procedures. [...] III) Special Applications - [...] IV) Annals of Statistical Data Science [...]
期刊最新文献
Editorial Board Efficient Bayesian functional principal component analysis of irregularly-observed multivariate curves Statistical modeling of Dengue transmission dynamics with environmental factors Analysis of order-of-addition experiments A goodness-of-fit test for functional time series with applications to Ornstein-Uhlenbeck processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1