An accurate computational approach for partial likelihood using Poisson-binomial distributions

IF 1.5 3区 数学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computational Statistics & Data Analysis Pub Date : 2025-02-24 DOI:10.1016/j.csda.2025.108161
Youngjin Cho, Yili Hong, Pang Du
{"title":"An accurate computational approach for partial likelihood using Poisson-binomial distributions","authors":"Youngjin Cho,&nbsp;Yili Hong,&nbsp;Pang Du","doi":"10.1016/j.csda.2025.108161","DOIUrl":null,"url":null,"abstract":"<div><div>In a Cox model, the partial likelihood, as the product of a series of conditional probabilities, is used to estimate the regression coefficients. In practice, those conditional probabilities are approximated by risk score ratios based on a continuous time model, and thus result in parameter estimates from only an approximate partial likelihood. Through a revisit to the original partial likelihood idea, an accurate partial likelihood computing method for the Cox model is proposed, which calculates the exact conditional probability using the Poisson-binomial distribution. New estimating and inference procedures are developed, and theoretical results are established for the proposed computational procedure. Although ties are common in real studies, current theories for the Cox model mostly do not consider cases for tied data. In contrast, the new approach includes the theory for grouped data, which allows ties, and also includes the theory for continuous data without ties, providing a unified framework for computing partial likelihood for data with or without ties. Numerical results show that the proposed method outperforms current methods in reducing bias and mean squared error, while achieving improved confidence interval coverage rates, especially when there are many ties or when the variability in risk scores is large. Comparisons between methods in real applications have been made.</div></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"208 ","pages":"Article 108161"},"PeriodicalIF":1.5000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics & Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167947325000374","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In a Cox model, the partial likelihood, as the product of a series of conditional probabilities, is used to estimate the regression coefficients. In practice, those conditional probabilities are approximated by risk score ratios based on a continuous time model, and thus result in parameter estimates from only an approximate partial likelihood. Through a revisit to the original partial likelihood idea, an accurate partial likelihood computing method for the Cox model is proposed, which calculates the exact conditional probability using the Poisson-binomial distribution. New estimating and inference procedures are developed, and theoretical results are established for the proposed computational procedure. Although ties are common in real studies, current theories for the Cox model mostly do not consider cases for tied data. In contrast, the new approach includes the theory for grouped data, which allows ties, and also includes the theory for continuous data without ties, providing a unified framework for computing partial likelihood for data with or without ties. Numerical results show that the proposed method outperforms current methods in reducing bias and mean squared error, while achieving improved confidence interval coverage rates, especially when there are many ties or when the variability in risk scores is large. Comparisons between methods in real applications have been made.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Computational Statistics & Data Analysis
Computational Statistics & Data Analysis 数学-计算机:跨学科应用
CiteScore
3.70
自引率
5.60%
发文量
167
审稿时长
60 days
期刊介绍: Computational Statistics and Data Analysis (CSDA), an Official Publication of the network Computational and Methodological Statistics (CMStatistics) and of the International Association for Statistical Computing (IASC), is an international journal dedicated to the dissemination of methodological research and applications in the areas of computational statistics and data analysis. The journal consists of four refereed sections which are divided into the following subject areas: I) Computational Statistics - Manuscripts dealing with: 1) the explicit impact of computers on statistical methodology (e.g., Bayesian computing, bioinformatics,computer graphics, computer intensive inferential methods, data exploration, data mining, expert systems, heuristics, knowledge based systems, machine learning, neural networks, numerical and optimization methods, parallel computing, statistical databases, statistical systems), and 2) the development, evaluation and validation of statistical software and algorithms. Software and algorithms can be submitted with manuscripts and will be stored together with the online article. II) Statistical Methodology for Data Analysis - Manuscripts dealing with novel and original data analytical strategies and methodologies applied in biostatistics (design and analytic methods for clinical trials, epidemiological studies, statistical genetics, or genetic/environmental interactions), chemometrics, classification, data exploration, density estimation, design of experiments, environmetrics, education, image analysis, marketing, model free data exploration, pattern recognition, psychometrics, statistical physics, image processing, robust procedures. [...] III) Special Applications - [...] IV) Annals of Statistical Data Science [...]
期刊最新文献
Regression analysis of elliptically symmetric directional data Editorial Board Editorial Board Communication-efficient estimation and inference for high-dimensional longitudinal data An accurate computational approach for partial likelihood using Poisson-binomial distributions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1