Huixing Ye , Wenqiang Chen , Tao Huang , Junfeng Xu , Xiaofu Wang
{"title":"Establishment of rapid extraction and sensitive detection system of trace corn syrup DNA in honey","authors":"Huixing Ye , Wenqiang Chen , Tao Huang , Junfeng Xu , Xiaofu Wang","doi":"10.1016/j.fochms.2024.100206","DOIUrl":null,"url":null,"abstract":"<div><p>Honey adulteration with exogenous syrup has become a common phenomenon, and current detection techniques that require large instruments are cumbersome and time-consuming. In this study, a simple and efficient method was developed by integrating the rapid extraction of nucleic acids (REMD) and recombinase polymerase amplification (RPA), known as REMD-RPA, for the rapid screening of syrup adulteration in honey. First, a rapid extraction method was developed to rapidly extract corn syrup DNA in five minutes to meet the requirements of PCR and RPA assays. Then, the RPA method for detecting endogenous maize genes <em>(ZssIIb)</em> was established, which could detect 12 copies/μL of the endogenous maize gene within 30 min without cross-reacting with other plant-derived genes. This indicated that the RPA technique exhibited high sensitivity and specificity. Finally, the REMD-RPA detection platform was used to detect different concentrations of corn syrup adulteration, and 1 % adulteration could be detected within 30 min. The 22 commercially available samples were tested to validate the efficacy of this method, and the established RPA was able to detect seven adulterated samples in less than 30 min. Overall, the developed method is rapid, sensitive, and specific, providing technical support for the rapid field detection of honey adulteration and can serve as a reference for developing other field test methods.</p></div>","PeriodicalId":34477,"journal":{"name":"Food Chemistry Molecular Sciences","volume":"8 ","pages":"Article 100206"},"PeriodicalIF":4.1000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666566224000133/pdfft?md5=6be2a5fdb957b831142988a457d2a21a&pid=1-s2.0-S2666566224000133-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry Molecular Sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666566224000133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Honey adulteration with exogenous syrup has become a common phenomenon, and current detection techniques that require large instruments are cumbersome and time-consuming. In this study, a simple and efficient method was developed by integrating the rapid extraction of nucleic acids (REMD) and recombinase polymerase amplification (RPA), known as REMD-RPA, for the rapid screening of syrup adulteration in honey. First, a rapid extraction method was developed to rapidly extract corn syrup DNA in five minutes to meet the requirements of PCR and RPA assays. Then, the RPA method for detecting endogenous maize genes (ZssIIb) was established, which could detect 12 copies/μL of the endogenous maize gene within 30 min without cross-reacting with other plant-derived genes. This indicated that the RPA technique exhibited high sensitivity and specificity. Finally, the REMD-RPA detection platform was used to detect different concentrations of corn syrup adulteration, and 1 % adulteration could be detected within 30 min. The 22 commercially available samples were tested to validate the efficacy of this method, and the established RPA was able to detect seven adulterated samples in less than 30 min. Overall, the developed method is rapid, sensitive, and specific, providing technical support for the rapid field detection of honey adulteration and can serve as a reference for developing other field test methods.
期刊介绍:
Food Chemistry: Molecular Sciences is one of three companion journals to the highly respected Food Chemistry.
Food Chemistry: Molecular Sciences is an open access journal publishing research advancing the theory and practice of molecular sciences of foods.
The types of articles considered are original research articles, analytical methods, comprehensive reviews and commentaries.
Topics include:
Molecular sciences relating to major and minor components of food (nutrients and bioactives) and their physiological, sensory, flavour, and microbiological aspects; data must be sufficient to demonstrate relevance to foods and as consumed by humans
Changes in molecular composition or structure in foods occurring or induced during growth, distribution and processing (industrial or domestic) or as a result of human metabolism
Quality, safety, authenticity and traceability of foods and packaging materials
Valorisation of food waste arising from processing and exploitation of by-products
Molecular sciences of additives, contaminants including agro-chemicals, together with their metabolism, food fate and benefit: risk to human health
Novel analytical and computational (bioinformatics) methods related to foods as consumed, nutrients and bioactives, sensory, metabolic fate, and origins of foods. Articles must be concerned with new or novel methods or novel uses and must be applied to real-world samples to demonstrate robustness. Those dealing with significant improvements to existing methods or foods and commodities from different regions, and re-use of existing data will be considered, provided authors can establish sufficient originality.