首页 > 最新文献

Food Chemistry Molecular Sciences最新文献

英文 中文
Characterization of the aroma and flavor profiles of guava fruit (Psidium guajava) during developing by HS-SPME-GC/MS and RNA sequencing 通过 HS-SPME-GC/MS 和 RNA 测序表征番石榴果实(Psidium guajava)发育过程中的香气和风味特征
IF 4.1 Q2 FOOD SCIENCE & TECHNOLOGY Pub Date : 2024-11-06 DOI: 10.1016/j.fochms.2024.100228
Jie Zhang , Yi Zhang , Shuaiyu Zou , Endian Yang , Ziyi Lei , Tingting Xu , Chen Feng
The flavor of guava, an important tropical fruit, is influenced by secondary metabolites. However, the mechanisms and processes underlying flavor formation in guava remain unclear. In this study, dynamic changes in volatile organic compounds (VOCs), sugars, and organic acids in guava peel and flesh across different developmental stages were investigated using headspace solid-phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry (GC–MS) and high-performance liquid chromatography (HPLC). Here, we identified 90 VOCs, three sugars and eight organic acids. The dynamics of VOCs differ between the flesh and peel. The early developmental stages are more critical in influencing the variation of VOCs in the flesh, while VOC changes in peel occur more progressively across the developmental stages. By integrating transcriptomic and metabolomic analyses, we identified several key genes involved in VOC, sugar, and acid metabolism. This is the first study to describe the expression patterns of these genes throughout guava development, providing new insights into guava flavor development.
番石榴是一种重要的热带水果,其风味受次级代谢物的影响。然而,番石榴风味形成的机制和过程仍不清楚。本研究采用顶空固相微萃取(HS-SPME)结合气相色谱-质谱法(GC-MS)和高效液相色谱法(HPLC)研究了番石榴果皮和果肉中挥发性有机化合物(VOC)、糖类和有机酸在不同发育阶段的动态变化。在这里,我们确定了 90 种挥发性有机化合物、3 种糖和 8 种有机酸。果肉和果皮中的挥发性有机化合物动态各不相同。早期发育阶段对果肉中挥发性有机化合物的变化影响更为关键,而果皮中挥发性有机化合物的变化在各个发育阶段更为渐进。通过整合转录组和代谢组分析,我们确定了参与挥发性有机化合物、糖和酸代谢的几个关键基因。这是首次描述这些基因在番石榴整个发育过程中表达模式的研究,为番石榴风味的形成提供了新的见解。
{"title":"Characterization of the aroma and flavor profiles of guava fruit (Psidium guajava) during developing by HS-SPME-GC/MS and RNA sequencing","authors":"Jie Zhang ,&nbsp;Yi Zhang ,&nbsp;Shuaiyu Zou ,&nbsp;Endian Yang ,&nbsp;Ziyi Lei ,&nbsp;Tingting Xu ,&nbsp;Chen Feng","doi":"10.1016/j.fochms.2024.100228","DOIUrl":"10.1016/j.fochms.2024.100228","url":null,"abstract":"<div><div>The flavor of guava, an important tropical fruit, is influenced by secondary metabolites. However, the mechanisms and processes underlying flavor formation in guava remain unclear. In this study, dynamic changes in volatile organic compounds (VOCs), sugars, and organic acids in guava peel and flesh across different developmental stages were investigated using headspace solid-phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry (GC–MS) and high-performance liquid chromatography (HPLC). Here, we identified 90 VOCs, three sugars and eight organic acids. The dynamics of VOCs differ between the flesh and peel. The early developmental stages are more critical in influencing the variation of VOCs in the flesh, while VOC changes in peel occur more progressively across the developmental stages. By integrating transcriptomic and metabolomic analyses, we identified several key genes involved in VOC, sugar, and acid metabolism. This is the first study to describe the expression patterns of these genes throughout guava development, providing new insights into guava flavor development.</div></div>","PeriodicalId":34477,"journal":{"name":"Food Chemistry Molecular Sciences","volume":"9 ","pages":"Article 100228"},"PeriodicalIF":4.1,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142664059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study on dynamic alterations of volatile organic compounds reveals aroma development over enzymatic-catalyzed process of Tieguanyin oolong tea production 酶催化铁观音乌龙茶生产过程中挥发性有机化合物动态变化揭示香气发展的研究
IF 4.1 Q2 FOOD SCIENCE & TECHNOLOGY Pub Date : 2024-10-16 DOI: 10.1016/j.fochms.2024.100227
Liangyu Wu , Xiaolan Chen , Jiaqi Lin , Hongzheng Lin , Ningkai Liao , Chenxue Li , Yunfei Hu , Yun Sun
To elucidate the formation of characteristic aroma over enzymatic-catalyzed processes (ECP), GC–MS-based volatile-metabolomic combined with desorption-electrospray-ionization coupled mass-spectrometry-imaging (DESI-MSI) were employed to analyze the changes of volatile organic compounds (VOCs) in Tieguanyin tea. A total of 579 VOCs were obtained, from which 24 components involved in five pathways were identified as biomarkers. Among these, four VOCs including 2-furancarboxylic acid, 4-methylbenzaldehyde, N-benzylformamide, cuminaldehyde, were detected in both DESI-MSI and GC–MS analysis, exhibiting dynamic changes along processing steps. RNA-sequencing analysis indicated the genes referring to stress response were activated during tea processing, facilitating the accumulation of flora-fruity aroma in tea leaf. Metabolic pathways analysis revealed that the increase in floral-fruity related components such as volatile terpenoids, phenylpropanoids/benzenoids, indole, alongside a decrease in green leaf volatiles including (E)-2-Hexenal, (Z)-3-Hexenol, played a crucial role in development of characteristic aroma, which could be a feasible index for evaluating processing techniques or quality of oolong tea.
为阐明酶催化过程(ECP)中特征香气的形成,采用基于气相色谱-质谱联用仪(GC-MS)的挥发性代谢组学和解吸-电喷雾电离耦合质谱-成像(DESI-MSI)分析了铁观音茶叶中挥发性有机化合物(VOCs)的变化。共获得 579 种挥发性有机化合物,并从中鉴定出涉及五种途径的 24 种成分作为生物标记物。其中,2-呋喃甲酸、4-甲基苯甲醛、N-苄基甲酰胺、积雪草醛等四种挥发性有机化合物在DESI-MSI和GC-MS分析中均被检测到,并表现出随加工步骤的动态变化。RNA 序列分析表明,应激反应基因在茶叶加工过程中被激活,促进了茶叶中花果香气的积累。代谢途径分析表明,花果香相关成分(如挥发性萜类化合物、苯丙酮类/类烯酮、吲哚)的增加,以及绿叶挥发物(包括(E)-2-己烯醛、(Z)-3-己烯醇)的减少,在特征香气的形成过程中发挥了关键作用。
{"title":"Study on dynamic alterations of volatile organic compounds reveals aroma development over enzymatic-catalyzed process of Tieguanyin oolong tea production","authors":"Liangyu Wu ,&nbsp;Xiaolan Chen ,&nbsp;Jiaqi Lin ,&nbsp;Hongzheng Lin ,&nbsp;Ningkai Liao ,&nbsp;Chenxue Li ,&nbsp;Yunfei Hu ,&nbsp;Yun Sun","doi":"10.1016/j.fochms.2024.100227","DOIUrl":"10.1016/j.fochms.2024.100227","url":null,"abstract":"<div><div>To elucidate the formation of characteristic aroma over enzymatic-catalyzed processes (ECP), GC–MS-based volatile-metabolomic combined with desorption-electrospray-ionization coupled mass-spectrometry-imaging (DESI-MSI) were employed to analyze the changes of volatile organic compounds (VOCs) in Tieguanyin tea. A total of 579 VOCs were obtained, from which 24 components involved in five pathways were identified as biomarkers. Among these, four VOCs including 2-furancarboxylic acid, 4-methylbenzaldehyde, N-benzylformamide, cuminaldehyde, were detected in both DESI-MSI and GC–MS analysis, exhibiting dynamic changes along processing steps. RNA-sequencing analysis indicated the genes referring to stress response were activated during tea processing, facilitating the accumulation of flora-fruity aroma in tea leaf. Metabolic pathways analysis revealed that the increase in floral-fruity related components such as volatile terpenoids, phenylpropanoids/benzenoids, indole, alongside a decrease in green leaf volatiles including (<em>E</em>)-2-Hexenal, (<em>Z</em>)-3-Hexenol, played a crucial role in development of characteristic aroma, which could be a feasible index for evaluating processing techniques or quality of oolong tea.</div></div>","PeriodicalId":34477,"journal":{"name":"Food Chemistry Molecular Sciences","volume":"9 ","pages":"Article 100227"},"PeriodicalIF":4.1,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142528743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Waste to wealth: Polyhydroxyalkanoates (PHA) production from food waste for a sustainable packaging paradigm 变废为宝:利用食物垃圾生产聚羟基烷酸(PHA),打造可持续包装模式
IF 4.1 Q2 FOOD SCIENCE & TECHNOLOGY Pub Date : 2024-10-10 DOI: 10.1016/j.fochms.2024.100225
Heri Septya Kusuma , Atna Sabita , Najla Anira Putri , Nadhira Azliza , Nafisa Illiyanasafa , Handoko Darmokoesoemo , Andrew Nosakhare Amenaghawon , Tonni Agustiono Kurniawan
The growing demand for sustainable food packaging and the increasing concerns regarding environmental pollution have driven interest in biodegradable materials. This paper presents an in-depth review of the production of Polyhydroxyalkanoates (PHA), a biodegradable polymer, from food waste. PHA-based bioplastics, particularly when derived from low-cost carbon sources such as volatile fatty acids (VFAs) and waste oils, offer a promising solution for reducing plastic waste and enhancing food packaging sustainability. Through optimization of microbial fermentation processes, PHA production can achieve significant efficiency improvements, with yields reaching up to 87 % PHA content under ideal conditions. This review highlights the technical advancements in using PHA for food packaging, emphasizing its biodegradability, biocompatibility, and potential to serve as a biodegradable alternative to petroleum-based plastics. However, challenges such as high production costs, mechanical limitations, and the need for scalability remain barriers to industrial adoption. The future of PHA in food packaging hinges on overcoming these challenges through further research and innovation in production techniques, material properties, and cost reduction strategies, along with necessary legislative support to promote widespread use.
人们对可持续食品包装的需求日益增长,对环境污染的关注也与日俱增,这促使人们对可生物降解材料产生了浓厚的兴趣。本文深入探讨了利用食物垃圾生产聚羟基烷酸酯(PHA)这种可生物降解的聚合物。以 PHA 为基础的生物塑料,尤其是从挥发性脂肪酸 (VFA) 和废油等低成本碳源中提炼出来的生物塑料,为减少塑料垃圾和提高食品包装的可持续性提供了一种前景广阔的解决方案。通过优化微生物发酵过程,PHA 的生产效率可显著提高,在理想条件下,PHA 的产量可达 87%。本综述重点介绍了将 PHA 用于食品包装的技术进展,强调了 PHA 的生物降解性、生物相容性以及作为石油基塑料的可生物降解替代品的潜力。然而,高昂的生产成本、机械限制和可扩展性需求等挑战仍然是工业应用的障碍。PHA 在食品包装中的未来取决于通过进一步研究和创新生产技术、材料特性和降低成本策略来克服这些挑战,同时还需要必要的立法支持来促进其广泛应用。
{"title":"Waste to wealth: Polyhydroxyalkanoates (PHA) production from food waste for a sustainable packaging paradigm","authors":"Heri Septya Kusuma ,&nbsp;Atna Sabita ,&nbsp;Najla Anira Putri ,&nbsp;Nadhira Azliza ,&nbsp;Nafisa Illiyanasafa ,&nbsp;Handoko Darmokoesoemo ,&nbsp;Andrew Nosakhare Amenaghawon ,&nbsp;Tonni Agustiono Kurniawan","doi":"10.1016/j.fochms.2024.100225","DOIUrl":"10.1016/j.fochms.2024.100225","url":null,"abstract":"<div><div>The growing demand for sustainable food packaging and the increasing concerns regarding environmental pollution have driven interest in biodegradable materials. This paper presents an in-depth review of the production of Polyhydroxyalkanoates (PHA), a biodegradable polymer, from food waste. PHA-based bioplastics, particularly when derived from low-cost carbon sources such as volatile fatty acids (VFAs) and waste oils, offer a promising solution for reducing plastic waste and enhancing food packaging sustainability. Through optimization of microbial fermentation processes, PHA production can achieve significant efficiency improvements, with yields reaching up to 87 % PHA content under ideal conditions. This review highlights the technical advancements in using PHA for food packaging, emphasizing its biodegradability, biocompatibility, and potential to serve as a biodegradable alternative to petroleum-based plastics. However, challenges such as high production costs, mechanical limitations, and the need for scalability remain barriers to industrial adoption. The future of PHA in food packaging hinges on overcoming these challenges through further research and innovation in production techniques, material properties, and cost reduction strategies, along with necessary legislative support to promote widespread use.</div></div>","PeriodicalId":34477,"journal":{"name":"Food Chemistry Molecular Sciences","volume":"9 ","pages":"Article 100225"},"PeriodicalIF":4.1,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142442330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The use of vitamin E in ocular health: Bridging omics approaches with Tocopherol and Tocotrienol in the management of glaucoma 维生素 E 在眼部健康中的应用:利用生育酚和生育三烯酚管理青光眼的全息方法
IF 4.1 Q2 FOOD SCIENCE & TECHNOLOGY Pub Date : 2024-09-24 DOI: 10.1016/j.fochms.2024.100224
Fazira Latib Ratib, Muhamad Arif Irfan Zafendi, Mohd Aizuddin Mohd Lazaldin
Vitamin E, encompassing tocopherols and tocotrienols is celebrated for its powerful antioxidant properties, which help neutralize free radicals and protect cells from oxidative damage. Over the years, research has shown that both tocopherols and tocotrienols offer significant benefits, including protection against radiation damage, cholesterol regulation, cardiovascular health, and neurological disorders. This wide range of benefits highlights the need for further exploration of vitamin E’s role in managing various diseases. One particularly promising area is its potential application in treating ocular diseases like glaucoma. Despite advances in treatment, current options have limitations, making the investigation of alternative approaches crucial. Omics technologies, which allow for a detailed examination of biological systems, could provide valuable insights into how tocopherols and tocotrienols work at a molecular level. Their neuroprotective and antioxidative properties make them promising candidates for glaucoma management. Additionally, the sustainability of vitamin E is noteworthy, as by-products from its production can be repurposed into valuable resources for nutraceuticals and pharmaceuticals. As research continues, integrating omics technologies with the study of vitamin E derivatives could unveil new therapeutic possibilities, further enhancing our understanding of its diverse health benefits and its potential role in preventing and managing diseases.
维生素 E(包括生育酚和生育三烯酚)因其强大的抗氧化特性而备受赞誉,它有助于中和自由基,保护细胞免受氧化损伤。多年来的研究表明,生育酚和生育三烯酚都具有显著的益处,包括防止辐射损伤、调节胆固醇、保护心血管健康和神经系统疾病。这些广泛的益处突出表明,有必要进一步探索维生素 E 在控制各种疾病方面的作用。其中一个特别有前景的领域是维生素 E 在治疗青光眼等眼部疾病方面的潜在应用。尽管在治疗方面取得了进展,但目前的选择仍有局限性,因此研究替代方法至关重要。Omics 技术可以对生物系统进行详细检查,它可以为了解生育酚和生育三烯酚如何在分子水平上发挥作用提供有价值的见解。它们的神经保护和抗氧化特性使其成为治疗青光眼的理想候选药物。此外,维生素 E 的可持续性也值得注意,因为其生产过程中产生的副产品可以重新利用,成为营养保健品和药品的宝贵资源。随着研究的不断深入,将全息技术与维生素 E 衍生物的研究相结合,可能会揭示出新的治疗可能性,进一步加深我们对维生素 E 的各种健康益处及其在预防和控制疾病方面的潜在作用的了解。
{"title":"The use of vitamin E in ocular health: Bridging omics approaches with Tocopherol and Tocotrienol in the management of glaucoma","authors":"Fazira Latib Ratib,&nbsp;Muhamad Arif Irfan Zafendi,&nbsp;Mohd Aizuddin Mohd Lazaldin","doi":"10.1016/j.fochms.2024.100224","DOIUrl":"10.1016/j.fochms.2024.100224","url":null,"abstract":"<div><div>Vitamin E, encompassing tocopherols and tocotrienols is celebrated for its powerful antioxidant properties, which help neutralize free radicals and protect cells from oxidative damage. Over the years, research has shown that both tocopherols and tocotrienols offer significant benefits, including protection against radiation damage, cholesterol regulation, cardiovascular health, and neurological disorders. This wide range of benefits highlights the need for further exploration of vitamin E’s role in managing various diseases. One particularly promising area is its potential application in treating ocular diseases like glaucoma. Despite advances in treatment, current options have limitations, making the investigation of alternative approaches crucial. Omics technologies, which allow for a detailed examination of biological systems, could provide valuable insights into how tocopherols and tocotrienols work at a molecular level. Their neuroprotective and antioxidative properties make them promising candidates for glaucoma management. Additionally, the sustainability of vitamin E is noteworthy, as by-products from its production can be repurposed into valuable resources for nutraceuticals and pharmaceuticals. As research continues, integrating omics technologies with the study of vitamin E derivatives could unveil new therapeutic possibilities, further enhancing our understanding of its diverse health benefits and its potential role in preventing and managing diseases.</div></div>","PeriodicalId":34477,"journal":{"name":"Food Chemistry Molecular Sciences","volume":"9 ","pages":"Article 100224"},"PeriodicalIF":4.1,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142359324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Combining widely targeted metabolomics and RNA-sequencing to reveal the function analysis of Phyllanthus emblica Linn. Juice-induced poultry macrophages 结合广泛的靶向代谢组学和RNA测序,揭示白花蛇舌草果汁诱导家禽巨噬细胞的功能分析果汁诱导的家禽巨噬细胞
IF 4.1 Q2 FOOD SCIENCE & TECHNOLOGY Pub Date : 2024-09-22 DOI: 10.1016/j.fochms.2024.100223
Chenggang Liu, Jin jin, Binyi Sun
This study explored the functional effects of cultivated and wild Phyllanthus emblica Linn juice (PEJ) in HD11 poultry macrophage lines, with the aim of potentially developing cultivated PE and its fruit residue as poultry feed additives. RNA-Seq was used to evaluate the functional differences between cultivated and wild PEJ induced HD11 cells. Both cultivated and wild PEJ could regulate cell replication by histone H1/H2 family genes and host immune response by Toll-like receptor 7 regulation. Wild PEJ inhibited M1-type polarization of host macrophages, while cultivated PEJ promoted M2-type polarization. Metabolites of cultivated and wild PE were identified by widely targeted metabolomics based on liquid chromatography-tandem mass spectrometry. Of the 911 metabolites, 238 differed functionally between cultivated and wild PE. The data provide a theoretical basis for the subsequent development of PE as a functional feed additive in poultry.
本研究探讨了栽培的和野生的大叶黄杨果汁(PEJ)对HD11家禽巨噬细胞系的功能影响,目的是开发栽培的大叶黄杨及其果实残渣作为家禽饲料添加剂的潜力。RNA-Seq 用于评估栽培和野生 PEJ 诱导 HD11 细胞的功能差异。栽培PEJ和野生PEJ都能通过组蛋白H1/H2家族基因调控细胞复制,通过Toll样受体7调控宿主免疫反应。野生PEJ抑制宿主巨噬细胞的M1型极化,而栽培PEJ则促进M2型极化。基于液相色谱-串联质谱的广泛靶向代谢组学鉴定了栽培和野生 PE 的代谢物。在 911 个代谢物中,有 238 个在功能上存在差异。这些数据为后续开发 PE 作为家禽功能性饲料添加剂提供了理论依据。
{"title":"Combining widely targeted metabolomics and RNA-sequencing to reveal the function analysis of Phyllanthus emblica Linn. Juice-induced poultry macrophages","authors":"Chenggang Liu,&nbsp;Jin jin,&nbsp;Binyi Sun","doi":"10.1016/j.fochms.2024.100223","DOIUrl":"10.1016/j.fochms.2024.100223","url":null,"abstract":"<div><div>This study explored the functional effects of cultivated and wild <em>Phyllanthus emblica</em> Linn juice (PEJ) in HD11 poultry macrophage lines, with the aim of potentially developing cultivated PE and its fruit residue as poultry feed additives. RNA-Seq was used to evaluate the functional differences between cultivated and wild PEJ induced HD11 cells. Both cultivated and wild PEJ could regulate cell replication by histone H1/H2 family genes and host immune response by Toll-like receptor 7 regulation. Wild PEJ inhibited M1-type polarization of host macrophages, while cultivated PEJ promoted M2-type polarization. Metabolites of cultivated and wild PE were identified by widely targeted metabolomics based on liquid chromatography-tandem mass spectrometry. Of the 911 metabolites, 238 differed functionally between cultivated and wild PE. The data provide a theoretical basis for the subsequent development of PE as a functional feed additive in poultry.</div></div>","PeriodicalId":34477,"journal":{"name":"Food Chemistry Molecular Sciences","volume":"9 ","pages":"Article 100223"},"PeriodicalIF":4.1,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142319847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-omics analysis reveals flavor differences in Xinjiang brown beef with varying intramuscular fat contents 多组学分析揭示了不同肌肉脂肪含量的新疆褐牛肉的风味差异
IF 4.1 Q2 FOOD SCIENCE & TECHNOLOGY Pub Date : 2024-08-30 DOI: 10.1016/j.fochms.2024.100220
Zhen Ma , Xiao Wang , Lei Chen , Lixing Yuan , Fanrong Cui , Zongsheng Zhao , Xiangmin Yan

Beef flavor plays a crucial role in consumer preference, yet research on this trait has been limited by past technological constraints. Intramuscular fat (IMF) is a key determinant of beef quality, influencing taste, marbling, and overall flavor. Xinjiang brown cattle (XBC), an indigenous breed from northern Xinjiang, China, presents significant variation in meat quality, with IMF content ranging from 0.2 % to 4.3 % within the population. This variation suggests strong potential for breeding improvement. In this study, we selected 82 XBC for slaughter and meat quality analysis, categorizing them based on IMF content. Using two-dimensional gas chromatography–time-of-flight mass spectrometry (GC×GC-TOF MS), we analyzed volatile flavor compounds across different beef cuts (Longissimus dorsi, Semitendinosus, Supraspinatus). Our results showed that beef with higher IMF levels exhibited enhanced flavor profiles, characterized by sweet, green, fruity, and waxy notes, while castrated bulls displayed the weakest flavor intensity. Metabolomic analysis further revealed significant differences in flavor substances between high and low IMF content beef. RNA-Seq analysis identified key genes (AQP4, FZD2, FADS1, BPG1, CEBPD, FABP4) associated with flavor formation, offering valuable insights for breeding strategies aimed at improving XBC meat quality. This comprehensive study provides a robust theoretical foundation for advancing the genetic improvement of XBC.

牛肉风味对消费者的偏好起着至关重要的作用,但由于过去的技术限制,对这一特性的研究一直受到限制。肌内脂肪(IMF)是决定牛肉品质的关键因素,影响牛肉的口感、大理石花纹和整体风味。新疆褐牛(XBC)是中国新疆北部的一个本土品种,其肉质差异显著,群体内的 IMF 含量从 0.2 % 到 4.3 % 不等。这种差异显示出育种改良的巨大潜力。在本研究中,我们选择了 82 头新疆大盘鸡进行屠宰和肉质分析,并根据 IMF 含量对其进行分类。我们使用二维气相色谱-飞行时间质谱(GC×GC-TOF MS)分析了不同牛肉部位(背阔肌、半腱肌、冈上肌)的挥发性风味化合物。结果表明,IMF 水平较高的牛肉风味更佳,具有甜味、绿色、果味和蜡味,而阉割公牛的风味强度最弱。代谢组分析进一步揭示了高IMF含量和低IMF含量牛肉风味物质的显著差异。RNA-Seq 分析确定了与风味形成相关的关键基因(AQP4、FZD2、FADS1、BPG1、CEBPD、FABP4),为旨在改善 XBC 肉质的育种策略提供了有价值的见解。这项全面的研究为推进 XBC 的遗传改良提供了坚实的理论基础。
{"title":"Multi-omics analysis reveals flavor differences in Xinjiang brown beef with varying intramuscular fat contents","authors":"Zhen Ma ,&nbsp;Xiao Wang ,&nbsp;Lei Chen ,&nbsp;Lixing Yuan ,&nbsp;Fanrong Cui ,&nbsp;Zongsheng Zhao ,&nbsp;Xiangmin Yan","doi":"10.1016/j.fochms.2024.100220","DOIUrl":"10.1016/j.fochms.2024.100220","url":null,"abstract":"<div><p>Beef flavor plays a crucial role in consumer preference, yet research on this trait has been limited by past technological constraints. Intramuscular fat (IMF) is a key determinant of beef quality, influencing taste, marbling, and overall flavor. Xinjiang brown cattle (XBC), an indigenous breed from northern Xinjiang, China, presents significant variation in meat quality, with IMF content ranging from 0.2 % to 4.3 % within the population. This variation suggests strong potential for breeding improvement. In this study, we selected 82 XBC for slaughter and meat quality analysis, categorizing them based on IMF content. Using two-dimensional gas chromatography–time-of-flight mass spectrometry (GC×GC-TOF MS), we analyzed volatile flavor compounds across different beef cuts (Longissimus dorsi, Semitendinosus, Supraspinatus). Our results showed that beef with higher IMF levels exhibited enhanced flavor profiles, characterized by sweet, green, fruity, and waxy notes, while castrated bulls displayed the weakest flavor intensity. Metabolomic analysis further revealed significant differences in flavor substances between high and low IMF content beef. RNA-Seq analysis identified key genes (AQP4, FZD2, FADS1, BPG1, CEBPD, FABP4) associated with flavor formation, offering valuable insights for breeding strategies aimed at improving XBC meat quality. This comprehensive study provides a robust theoretical foundation for advancing the genetic improvement of XBC.</p></div>","PeriodicalId":34477,"journal":{"name":"Food Chemistry Molecular Sciences","volume":"9 ","pages":"Article 100220"},"PeriodicalIF":4.1,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666566224000273/pdfft?md5=e4634b88178b149ea17e1977655674e4&pid=1-s2.0-S2666566224000273-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142136683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transcriptomic and metabolomic analyses reveal the positive effect of moderate concentration of sodium chloride treatment on the production of β-carotene, torulene, and torularhodin in oleaginous red yeast Rhodosporidiobolus odoratus XQR 转录组和代谢组分析揭示了中等浓度氯化钠处理对含油红酵母 Rhodosporidiobolus odoratus XQR 产生 β-胡萝卜素、香豌豆苷和香豌豆苷的积极影响
IF 4.1 Q2 FOOD SCIENCE & TECHNOLOGY Pub Date : 2024-08-30 DOI: 10.1016/j.fochms.2024.100221
Die Zhao , Chunji Li , Nan Zeng , Dandan Wang , Guohui Yu , Ning Zhang , Bingxue Li
Carotenoids, a family of lipid-soluble pigments, have garnered growing interest for their health-promoting benefits and are widely utilized in the food, feed, pharmaceutical, and cosmetic industries. Rhodosporidiobolus odoratus, a representative oleaginous red yeast, is considered a promising alternative for producing high-value carotenoids including β-carotene, torulene, and torularhodin. Here, the impact of varying concentrations of NaCl treatments on carotenoid contents in R. odoratus XQR after 120 h of incubation was examined. The results indicated that, as compared to the control (59.37 μg/gdw), the synthesis of total carotenoids was significantly increased and entirely suppressed under low-to-moderate (0.25 mol/L: 68.06 μg/gdw, 0.5 mol/L: 67.62 μg/gdw, and 0.75 mol/L: 146.47 μg/gdw) and high (1.0, 1.25, and 1.5 mol/L: 0 μg/gdw) concentrations of NaCl treatments, respectively. Moreover, the maximum production of β-carotene (117.62 μg/gdw), torulene (21.81 μg/gdw), and torularhodin (7.04 μg/gdw) was achieved with a moderate concentration (0.75 mol/L) of NaCl treatment. Transcriptomic and metabolomic analyses suggested that the increase in β-carotene, torulene, and torularhodin production might be primarily attributed to the up-regulation of some key protein-coding genes involved in the terpenoid backbone biosynthesis (atoB, HMGCS, and mvaD), carotenoid biosynthesis (crtYB and crtI), and TCA cycle (pckA, DLAT, pyc, MDH1, gltA, acnA, IDH1/2, IDH3, sucA, sucB, sucD, LSC1, SDHA, and fumA/fumB). The present study not only demonstrates a viable method to concurrently increase the production of β-carotene, torulene, torularhodin, and total carotenoids in R. odoratus XQR, but it also establishes a molecular foundation for further enhancing their production through genetic engineering.
类胡萝卜素是一种脂溶性色素,因其对健康的益处而受到越来越多的关注,并被广泛应用于食品、饲料、制药和化妆品行业。具有代表性的含油红酵母 Rhodosporidiobolus odoratus 被认为是生产高价值类胡萝卜素(包括 β-胡萝卜素、torulene 和 torularhodin)的理想替代品。本文研究了不同浓度的氯化钠处理对培养 120 小时后臭红酵母 XQR 中类胡萝卜素含量的影响。结果表明,与对照组(59.37 μg/gdw)相比,在中低浓度(0.25 mol/L:68.06 μg/gdw;0.5 mol/L:67.62 μg/gdw;0.75 mol/L:146.47 μg/gdw)和高浓度(1.0、1.25 和 1.5 mol/L:0 μg/gdw)NaCl 处理下,类胡萝卜素总量的合成明显增加并完全被抑制。此外,在中等浓度(0.75 mol/L)的氯化钠处理中,β-胡萝卜素(117.62 μg/gdw)、香豌豆苷(21.81 μg/gdw)和香豌豆苷(7.04 μg/gdw)的产量最大。转录组和代谢组分析表明,β-胡萝卜素、虎耳草烯和虎耳草苷产量的增加可能主要是由于参与萜类骨架生物合成的一些关键蛋白编码基因(atoB、HMGCS和mvaD)、类胡萝卜素生物合成(crtYB和crtI)和TCA循环(pckA、DLAT、pyc、MDH1、gltA、acnA、IDH1/2、IDH3、sucA、sucB、sucD、LSC1、SDHA和fumA/fumB)中的一些关键蛋白编码基因的上调。本研究不仅证明了同时提高 R. odoratus XQR 中 β-胡萝卜素、torulene、torularhodin 和总类胡萝卜素产量的可行方法,而且为通过基因工程进一步提高其产量奠定了分子基础。
{"title":"Transcriptomic and metabolomic analyses reveal the positive effect of moderate concentration of sodium chloride treatment on the production of β-carotene, torulene, and torularhodin in oleaginous red yeast Rhodosporidiobolus odoratus XQR","authors":"Die Zhao ,&nbsp;Chunji Li ,&nbsp;Nan Zeng ,&nbsp;Dandan Wang ,&nbsp;Guohui Yu ,&nbsp;Ning Zhang ,&nbsp;Bingxue Li","doi":"10.1016/j.fochms.2024.100221","DOIUrl":"10.1016/j.fochms.2024.100221","url":null,"abstract":"<div><div>Carotenoids, a family of lipid-soluble pigments, have garnered growing interest for their health-promoting benefits and are widely utilized in the food, feed, pharmaceutical, and cosmetic industries. <em>Rhodosporidiobolus odoratu</em>s, a representative oleaginous red yeast, is considered a promising alternative for producing high-value carotenoids including β-carotene, torulene, and torularhodin. Here, the impact of varying concentrations of NaCl treatments on carotenoid contents in <em>R. odoratus</em> XQR after 120 h of incubation was examined. The results indicated that, as compared to the control (59.37 μg/g<sub>dw</sub>), the synthesis of total carotenoids was significantly increased and entirely suppressed under low-to-moderate (0.25 mol/L: 68.06 μg/g<sub>dw</sub>, 0.5 mol/L: 67.62 μg/g<sub>dw</sub>, and 0.75 mol/L: 146.47 μg/g<sub>dw</sub>) and high (1.0, 1.25, and 1.5 mol/L: 0 μg/g<sub>dw</sub>) concentrations of NaCl treatments, respectively. Moreover, the maximum production of β-carotene (117.62 μg/g<sub>dw</sub>), torulene (21.81 μg/g<sub>dw</sub>), and torularhodin (7.04 μg/g<sub>dw</sub>) was achieved with a moderate concentration (0.75 mol/L) of NaCl treatment. Transcriptomic and metabolomic analyses suggested that the increase in β-carotene, torulene, and torularhodin production might be primarily attributed to the up-regulation of some key protein-coding genes involved in the terpenoid backbone biosynthesis (<em>atoB</em>, <em>HMGCS</em>, and <em>mvaD</em>), carotenoid biosynthesis (<em>crtYB</em> and <em>crtI</em>), and TCA cycle (<em>pckA</em>, <em>DLAT, pyc, MDH1</em>, <em>gltA</em>, <em>acnA</em>, <em>IDH1/2</em>, <em>IDH3</em>, <em>sucA</em>, <em>sucB</em>, <em>sucD</em>, <em>LSC1</em>, <em>SDHA</em>, and <em>fumA/fumB</em>). The present study not only demonstrates a viable method to concurrently increase the production of β-carotene, torulene, torularhodin, and total carotenoids in <em>R. odoratus</em> XQR, but it also establishes a molecular foundation for further enhancing their production through genetic engineering.</div></div>","PeriodicalId":34477,"journal":{"name":"Food Chemistry Molecular Sciences","volume":"9 ","pages":"Article 100221"},"PeriodicalIF":4.1,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142322687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unraveling the genetic and epigenetic landscape governing intramuscular fat deposition in rabbits: Insights and implications 揭示兔子肌肉内脂肪沉积的遗传和表观遗传学规律:见解和影响
IF 4.1 Q2 FOOD SCIENCE & TECHNOLOGY Pub Date : 2024-08-30 DOI: 10.1016/j.fochms.2024.100222
Ifeanyi Solomon Ahamba , Chinyere Mary-Cynthia Ikele , Lionel Kinkpe , Naqash Goswami , Hui Wang , Zhen Li , Zhanjun Ren , Xianggui Dong

Intramuscular fat (IMF) content is a predominant factor recognized to affect rabbit meat quality, directly impacting flavor, juiciness, and consumer preference. Despite its significance, the major interplay of genetic and epigenetic factors regulating IMF in rabbits remains largely unexplored. This review sheds light on this critical knowledge gap, offering valuable insights and future directions. We delve into the potential role of established candidate genes from other livestock (e.g. PPARγ, FABP4, and SCD) in rabbits, while exploring the identified novel genes of IMF in rabbits. Furthermore, we explored the quantitative trait loci studies in rabbit IMF and genomic selection approaches for improving IMF content in rabbits. Beyond genetics, this review unveils the exciting realm of epigenetic mechanisms modulating IMF deposition. We explored the potential of DNA methylation patterns, histone modifications, and non-coding RNA-mediation as fingerprints for selecting rabbits with desirable IMF levels. Additionally, we explored the possibility of manipulating the epigenetic landscape through nutraceuticals interventions to promote favorable IMF depositions. By comprehensively deciphering the genomic and epigenetic terrain of rabbit intramuscular fat regulation, this study aims to assess the existing knowledge regarding the genetic and epigenetic factors that control the deposition of intramuscular fat in rabbits. By doing so, we identified gaps in the current research, and suggested potential areas for further investigation that would enhance the quality of rabbit meat. This can enable breeders to develop targeted breeding strategies, optimize nutrition, and create innovative interventions to enhance the quality of rabbit meat, meet consumer demands and increase market competitiveness.

肌内脂肪(IMF)含量是公认的影响兔肉品质的主要因素,直接影响兔肉的风味、多汁性和消费者的偏好。尽管其意义重大,但调控兔子肌内脂肪含量的遗传和表观遗传因素的主要相互作用在很大程度上仍未得到探索。本综述揭示了这一重要的知识空白,提供了有价值的见解和未来发展方向。我们深入研究了其他家畜已确定的候选基因(如 PPARγ、FABP4 和 SCD)在家兔中的潜在作用,同时探讨了已发现的家兔 IMF 的新基因。此外,我们还探讨了家兔IMF的数量性状位点研究以及提高家兔IMF含量的基因组选择方法。除遗传学外,本综述还揭示了调节 IMF 沉积的表观遗传机制这一令人兴奋的领域。我们探讨了 DNA 甲基化模式、组蛋白修饰和非编码 RNA 媒介作为选择具有理想 IMF 水平的兔子的指纹的潜力。此外,我们还探索了通过营养保健品干预来操纵表观遗传景观的可能性,以促进有利的 IMF 沉积。通过全面解密兔子肌肉内脂肪调控的基因组和表观遗传学环境,本研究旨在评估有关控制兔子肌肉内脂肪沉积的基因和表观遗传学因素的现有知识。通过评估,我们发现了当前研究中的不足,并提出了进一步研究的潜在领域,以提高兔肉的品质。这可以帮助育种者制定有针对性的育种策略、优化营养和创新干预措施,以提高兔肉质量、满足消费者需求和增强市场竞争力。
{"title":"Unraveling the genetic and epigenetic landscape governing intramuscular fat deposition in rabbits: Insights and implications","authors":"Ifeanyi Solomon Ahamba ,&nbsp;Chinyere Mary-Cynthia Ikele ,&nbsp;Lionel Kinkpe ,&nbsp;Naqash Goswami ,&nbsp;Hui Wang ,&nbsp;Zhen Li ,&nbsp;Zhanjun Ren ,&nbsp;Xianggui Dong","doi":"10.1016/j.fochms.2024.100222","DOIUrl":"10.1016/j.fochms.2024.100222","url":null,"abstract":"<div><p>Intramuscular fat (IMF) content is a predominant factor recognized to affect rabbit meat quality, directly impacting flavor, juiciness, and consumer preference. Despite its significance, the major interplay of genetic and epigenetic factors regulating IMF in rabbits remains largely unexplored. This review sheds light on this critical knowledge gap, offering valuable insights and future directions. We delve into the potential role of established candidate genes from other livestock (e.g. <em>PPARγ, FABP4,</em> and <em>SCD</em>) in rabbits, while exploring the identified novel genes of IMF in rabbits. Furthermore, we explored the quantitative trait loci studies in rabbit IMF and genomic selection approaches for improving IMF content in rabbits. Beyond genetics, this review unveils the exciting realm of epigenetic mechanisms modulating IMF deposition. We explored the potential of DNA methylation patterns, histone modifications, and non-coding RNA-mediation as fingerprints for selecting rabbits with desirable IMF levels. Additionally, we explored the possibility of manipulating the epigenetic landscape through nutraceuticals interventions to promote favorable IMF depositions. By comprehensively deciphering the genomic and epigenetic terrain of rabbit intramuscular fat regulation, this study aims to assess the existing knowledge regarding the genetic and epigenetic factors that control the deposition of intramuscular fat in rabbits. By doing so, we identified gaps in the current research, and suggested potential areas for further investigation that would enhance the quality of rabbit meat. This can enable breeders to develop targeted breeding strategies, optimize nutrition, and create innovative interventions to enhance the quality of rabbit meat, meet consumer demands and increase market competitiveness.</p></div>","PeriodicalId":34477,"journal":{"name":"Food Chemistry Molecular Sciences","volume":"9 ","pages":"Article 100222"},"PeriodicalIF":4.1,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666566224000297/pdfft?md5=af224a493c96210b52ceadc49418d219&pid=1-s2.0-S2666566224000297-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142136682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mapping taste and flavour traits to genetic markers in lettuce Lactuca sativa 将莴苣的口感和风味特征映射到遗传标记上
IF 4.1 Q2 FOOD SCIENCE & TECHNOLOGY Pub Date : 2024-08-23 DOI: 10.1016/j.fochms.2024.100215
Martin Chadwick , Jonathan R. Swann , Frances Gawthrop , Richard Michelmore , Davide Scaglione , Maria Jose-Truco , Carol Wagstaff

Lettuce is the most highly consumed raw leafy vegetable crop eaten worldwide, making it nutritionally important in spite of its comparatively low nutrient density in relation to other vegetables. However, the perception of bitterness caused by high levels of sesquiterpenoid lactones and comparatively low levels of sweet tasting sugars limits palatability. To assess variation in nutritional and taste-related metabolites we assessed 104 members of a Lactuca sativa cv. Salinas x L. serriola (accession UC96US23) mapping population. Plants were grown in three distinct environments, and untargeted NMR and HPLC were used as a rapid chemotyping method, from which 63 unique Quantitative Trait Loci (QTL) were identified. We were able to identify putative regulatory candidate genes underlying the QTL for fructose on linkage group 9, which accounted for up to 36 % of our population variation, and which was stable across all three growing environments; and for 15-p-hydroxyyphenylacetyllactucin-8-sulfate on linkage group 5 which has previously been identified for its low bitterness, while retaining anti-herbivory field effects. We also identified a candidate gene for flavonoid 3′,5′- hydroxylase underlying a polyphenol QTL on linkage group 5, and two further candidate genes in sugar biosynthesis on linkage groups 2 and 5. Collectively these candidate genes and their associated markers can inform a route for plant breeders to improve the palatability and nutritional value of lettuce in their breeding programmes.

生菜是全世界食用量最大的生叶蔬菜作物,尽管与其他蔬菜相比营养密度相对较低,但其营养价值却很高。然而,由于倍半萜内酯的含量较高,而甜味糖的含量相对较低,导致人们感觉莴苣有苦味,这限制了莴苣的适口性。为了评估营养和口感相关代谢物的变异,我们评估了萨利纳斯(Salinas)乳白苏(Lactuca sativa cv. Salinas x L. serriola)(登录号 UC96US23)制图群体的 104 个成员。植物生长在三种不同的环境中,采用非靶向 NMR 和 HPLC 作为快速化学分型方法,从中鉴定出 63 个独特的定量性状位点 (QTL)。我们确定了连接组 9 上果糖 QTL 的潜在调控候选基因,该基因占种群变异的 36%,并且在所有三种生长环境中都保持稳定;还确定了连接组 5 上 15-对羟基苯基乙酰半乳糖苷-8-硫酸盐 QTL 的潜在调控候选基因,该基因之前已被确定为具有低苦味,同时保留了抗食草动物的田间效应。我们还发现了一个黄酮类化合物 3′,5′-羟化酶的候选基因,该基因是多酚 QTL 的基础,位于第 5 连接组上,另外还有两个糖类生物合成的候选基因,分别位于第 2 和第 5 连接组上。这些候选基因及其相关标记可为植物育种者在育种计划中提高莴苣的适口性和营养价值提供参考。
{"title":"Mapping taste and flavour traits to genetic markers in lettuce Lactuca sativa","authors":"Martin Chadwick ,&nbsp;Jonathan R. Swann ,&nbsp;Frances Gawthrop ,&nbsp;Richard Michelmore ,&nbsp;Davide Scaglione ,&nbsp;Maria Jose-Truco ,&nbsp;Carol Wagstaff","doi":"10.1016/j.fochms.2024.100215","DOIUrl":"10.1016/j.fochms.2024.100215","url":null,"abstract":"<div><p>Lettuce is the most highly consumed raw leafy vegetable crop eaten worldwide, making it nutritionally important in spite of its comparatively low nutrient density in relation to other vegetables. However, the perception of bitterness caused by high levels of sesquiterpenoid lactones and comparatively low levels of sweet tasting sugars limits palatability. To assess variation in nutritional and taste-related metabolites we assessed 104 members of a <em>Lactuca sativa</em> cv. Salinas x <em>L. serriola</em> (accession UC96US23) mapping population. Plants were grown in three distinct environments, and untargeted NMR and HPLC were used as a rapid chemotyping method, from which 63 unique Quantitative Trait Loci (QTL) were identified. We were able to identify putative regulatory candidate genes underlying the QTL for fructose on linkage group 9, which accounted for up to 36 % of our population variation, and which was stable across all three growing environments; and for 15-p-hydroxyyphenylacetyllactucin-8-sulfate on linkage group 5 which has previously been identified for its low bitterness, while retaining anti-herbivory field effects. We also identified a candidate gene for flavonoid 3′,5′- hydroxylase underlying a polyphenol QTL on linkage group 5, and two further candidate genes in sugar biosynthesis on linkage groups 2 and 5. Collectively these candidate genes and their associated markers can inform a route for plant breeders to improve the palatability and nutritional value of lettuce in their breeding programmes.</p></div>","PeriodicalId":34477,"journal":{"name":"Food Chemistry Molecular Sciences","volume":"9 ","pages":"Article 100215"},"PeriodicalIF":4.1,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666566224000224/pdfft?md5=adbd66ada737d0ae35277ef026c75dd0&pid=1-s2.0-S2666566224000224-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142086878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Use of genomics & proteomics in studying lipase producing microorganisms & its application 利用基因组学和蛋白质组学研究产脂酶微生物及其应用
IF 4.1 Q2 FOOD SCIENCE & TECHNOLOGY Pub Date : 2024-08-23 DOI: 10.1016/j.fochms.2024.100218
Debashrita Majumder , Ankita Dey , Srimanta Ray , Debasmita Bhattacharya , Moupriya Nag , Dibyajit Lahiri

In biotechnological applications, lipases are recognized as the most widely utilized and versatile enzymes, pivotal in biocatalytic processes, predominantly produced by various microbial species. Utilizing omics technology, natural sources can be meticulously screened to find microbial flora which are responsible for oil production. Lipases are versatile biocatalysts. They are used in a variety of bioconversion reactions and are receiving a lot of attention because of the quick development of enzyme technology and its usefulness in industrial operations. This article offers recent insights into microbial lipase sources, including fungi, bacteria, and yeast, alongside traditional and modern methods of purification such as precipitation, immunopurification and chromatographic separation. Additionally, it explores innovative methods like the reversed micellar system, aqueous two-phase system (ATPS), and aqueous two-phase flotation (ATPF). The article deals with the use of microbial lipases in a variety of sectors, including the food, textile, leather, cosmetics, paper, detergent, while also critically analyzing lipase-producing microbes. Moreover, it highlights the role of lipases in biosensors, biodiesel production, tea processing, bioremediation, and racemization. This review provides the concept of the use of omics technique in the mechanism of screening of microbial species those are capable of producing lipase and also find the potential applications.

在生物技术应用中,脂肪酶被认为是使用最广泛、用途最广的酶,在生物催化过程中起着关键作用,主要由各种微生物产生。利用分子生物学技术,可以对天然资源进行细致筛选,找到负责产油的微生物菌群。脂肪酶是一种多功能生物催化剂。由于酶技术的快速发展及其在工业操作中的实用性,它们被用于各种生物转化反应,并受到广泛关注。本文介绍了真菌、细菌和酵母等微生物脂肪酶来源的最新研究成果,以及沉淀、免疫纯化和色谱分离等传统和现代纯化方法。此外,文章还探讨了反向胶束系统、水性两相系统(ATPS)和水性两相浮选(ATPF)等创新方法。文章论述了微生物脂肪酶在食品、纺织、皮革、化妆品、造纸、洗涤剂等多个领域的应用,同时还对产生脂肪酶的微生物进行了批判性分析。此外,它还强调了脂肪酶在生物传感器、生物柴油生产、茶叶加工、生物修复和消旋化方面的作用。这篇综述提供了在筛选能够产生脂肪酶的微生物物种的机制中使用全息技术的概念,同时也发现了潜在的应用领域。
{"title":"Use of genomics & proteomics in studying lipase producing microorganisms & its application","authors":"Debashrita Majumder ,&nbsp;Ankita Dey ,&nbsp;Srimanta Ray ,&nbsp;Debasmita Bhattacharya ,&nbsp;Moupriya Nag ,&nbsp;Dibyajit Lahiri","doi":"10.1016/j.fochms.2024.100218","DOIUrl":"10.1016/j.fochms.2024.100218","url":null,"abstract":"<div><p>In biotechnological applications, lipases are recognized as the most widely utilized and versatile enzymes, pivotal in biocatalytic processes, predominantly produced by various microbial species. Utilizing omics technology, natural sources can be meticulously screened to find microbial flora which are responsible for oil production. Lipases are versatile biocatalysts. They are used in a variety of bioconversion reactions and are receiving a lot of attention because of the quick development of enzyme technology and its usefulness in industrial operations. This article offers recent insights into microbial lipase sources, including fungi, bacteria, and yeast, alongside traditional and modern methods of purification such as precipitation, immunopurification and chromatographic separation. Additionally, it explores innovative methods like the reversed micellar system, aqueous two-phase system (ATPS), and aqueous two-phase flotation (ATPF). The article deals with the use of microbial lipases in a variety of sectors, including the food, textile, leather, cosmetics, paper, detergent, while also critically analyzing lipase-producing microbes. Moreover, it highlights the role of lipases in biosensors, biodiesel production, tea processing, bioremediation, and racemization. This review provides the concept of the use of omics technique in the mechanism of screening of microbial species those are capable of producing lipase and also find the potential applications.</p></div>","PeriodicalId":34477,"journal":{"name":"Food Chemistry Molecular Sciences","volume":"9 ","pages":"Article 100218"},"PeriodicalIF":4.1,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266656622400025X/pdfft?md5=76e67c338d2e84c4bb7344eb43cc61c2&pid=1-s2.0-S266656622400025X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142097400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Food Chemistry Molecular Sciences
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1