Valorization of waste engine oil to mono- and di-rhamnolipid in a sustainable approach to circular bioeconomy

IF 3.1 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Biodegradation Pub Date : 2024-04-25 DOI:10.1007/s10532-024-10081-6
Shailee Gaur, Mohan Jujaru, Revanth Vennu, Suresh Gupta, Amit Jain
{"title":"Valorization of waste engine oil to mono- and di-rhamnolipid in a sustainable approach to circular bioeconomy","authors":"Shailee Gaur,&nbsp;Mohan Jujaru,&nbsp;Revanth Vennu,&nbsp;Suresh Gupta,&nbsp;Amit Jain","doi":"10.1007/s10532-024-10081-6","DOIUrl":null,"url":null,"abstract":"<div><p>This study aims to valorize waste engine oil (WEO) for synthesizing economically viable biosurfactants (rhamnolipids) to strengthen the circular bioeconomy concept. It specifically focuses on investigating the influence of key bioprocess parameters, viz. agitation and aeration rates, on enhancing rhamnolipid yield in a fed-batch fermentation mode. The methodology involves conducting experiments in a stirred tank bioreactor (3 L) using <i>Pseudomonas aeruginosa</i> gi |KP 163922| as the test organism. Central composite design and response surface methodology (CCD-RSM) are employed to design the experiments and analyze the effects of agitation and aeration rates on various parameters, including dry cell biomass (DCBM), surface tension, tensoactivity, and rhamnolipid yield. It is also essential to determine the mechanistic pathway of biosurfactant production followed by the strain using complex hydrophobic substrates such as WEO. The study reveals that optimal agitation and aeration rates of 200 rpm and 1 Lpm result in the highest biosurfactant yield of 29.76 g/L with minimal surface tension (28 mN/m). Biosurfactant characterization using FTIR, <sup>1</sup>H NMR, and UPLC-MS/MS confirm the presence of dominant molecular ion peaks m/z 543.9 and 675.1. This suggests that the biosurfactant is a mixture of mono- and di-rhamnolipids (RhaC10C10, RhaRhaC10C12:1, RhaRhaC12:1C10). The findings present a sustainable approach for biosurfactant production in a fed-batch bioreactor. This research opens the possibility of exploring the use of pilot or large-scale bioreactors for biosurfactant production in future investigations.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"35 5","pages":"803 - 818"},"PeriodicalIF":3.1000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodegradation","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10532-024-10081-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims to valorize waste engine oil (WEO) for synthesizing economically viable biosurfactants (rhamnolipids) to strengthen the circular bioeconomy concept. It specifically focuses on investigating the influence of key bioprocess parameters, viz. agitation and aeration rates, on enhancing rhamnolipid yield in a fed-batch fermentation mode. The methodology involves conducting experiments in a stirred tank bioreactor (3 L) using Pseudomonas aeruginosa gi |KP 163922| as the test organism. Central composite design and response surface methodology (CCD-RSM) are employed to design the experiments and analyze the effects of agitation and aeration rates on various parameters, including dry cell biomass (DCBM), surface tension, tensoactivity, and rhamnolipid yield. It is also essential to determine the mechanistic pathway of biosurfactant production followed by the strain using complex hydrophobic substrates such as WEO. The study reveals that optimal agitation and aeration rates of 200 rpm and 1 Lpm result in the highest biosurfactant yield of 29.76 g/L with minimal surface tension (28 mN/m). Biosurfactant characterization using FTIR, 1H NMR, and UPLC-MS/MS confirm the presence of dominant molecular ion peaks m/z 543.9 and 675.1. This suggests that the biosurfactant is a mixture of mono- and di-rhamnolipids (RhaC10C10, RhaRhaC10C12:1, RhaRhaC12:1C10). The findings present a sustainable approach for biosurfactant production in a fed-batch bioreactor. This research opens the possibility of exploring the use of pilot or large-scale bioreactors for biosurfactant production in future investigations.

Graphical abstract

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
以可持续的方式实现循环生物经济,将废机油转化为单鼠李糖脂和双鼠李糖脂。
本研究旨在利用废弃发动机油(WEO)合成经济上可行的生物表面活性剂(鼠李糖脂),以加强循环生物经济概念。该研究特别关注研究关键生物工艺参数(即搅拌和通气速率)对提高喂料批次发酵模式下鼠李脂产量的影响。研究方法包括在搅拌罐生物反应器(3 L)中使用铜绿假单胞菌 gi |KP 163922|作为试验生物进行实验。实验设计采用了中心复合设计和响应面方法(CCD-RSM),并分析了搅拌和通气速率对干细胞生物量(DCBM)、表面张力、张力活性和鼠李糖脂产量等各种参数的影响。此外,确定菌株使用 WEO 等复杂疏水基质生产生物表面活性剂的机理途径也很重要。研究表明,200 转/分钟和 1 升/分钟的最佳搅拌和通气速率可使生物表面活性剂产量达到 29.76 克/升,且表面张力最小(28 毫牛顿/米)。利用傅立叶变换红外光谱(FTIR)、1H NMR 和 UPLC-MS/MS 对生物表面活性剂进行表征,证实存在主要的分子离子峰 m/z 543.9 和 675.1。这表明生物表面活性剂是单鼠李糖脂和双鼠李糖脂(RhaC10C10、RhaRhaC10C12:1、RhaRhaC12:1C10)的混合物。研究结果提出了一种在喂料批次生物反应器中生产生物表面活性剂的可持续方法。这项研究为今后探索使用中试或大型生物反应器生产生物表面活性剂提供了可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biodegradation
Biodegradation 工程技术-生物工程与应用微生物
CiteScore
5.60
自引率
0.00%
发文量
36
审稿时长
6 months
期刊介绍: Biodegradation publishes papers, reviews and mini-reviews on the biotransformation, mineralization, detoxification, recycling, amelioration or treatment of chemicals or waste materials by naturally-occurring microbial strains, microbial associations, or recombinant organisms. Coverage spans a range of topics, including Biochemistry of biodegradative pathways; Genetics of biodegradative organisms and development of recombinant biodegrading organisms; Molecular biology-based studies of biodegradative microbial communities; Enhancement of naturally-occurring biodegradative properties and activities. Also featured are novel applications of biodegradation and biotransformation technology, to soil, water, sewage, heavy metals and radionuclides, organohalogens, high-COD wastes, straight-, branched-chain and aromatic hydrocarbons; Coverage extends to design and scale-up of laboratory processes and bioreactor systems. Also offered are papers on economic and legal aspects of biological treatment of waste.
期刊最新文献
Evaluation of microbial community dynamics and chlorinated solvent biodegradation in methane-amended microcosms from an acidic aquifer Disentangling the microbial genomic traits associated with aromatic hydrocarbon degradation in a jet fuel-contaminated aquifer Revolutionizing dairy waste: emerging solutions in conjunction with microbial engineering Isolation and purification of esterase enzyme from marine bacteria associated with biodegradation of polyvinyl chloride (PVC) Insights of energy potential in thermophilic sugarcane vinasse and molasses treatment: does two-stage codigestion enhance operational performance?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1