Shailee Gaur, Mohan Jujaru, Revanth Vennu, Suresh Gupta, Amit Jain
{"title":"Valorization of waste engine oil to mono- and di-rhamnolipid in a sustainable approach to circular bioeconomy","authors":"Shailee Gaur, Mohan Jujaru, Revanth Vennu, Suresh Gupta, Amit Jain","doi":"10.1007/s10532-024-10081-6","DOIUrl":null,"url":null,"abstract":"<div><p>This study aims to valorize waste engine oil (WEO) for synthesizing economically viable biosurfactants (rhamnolipids) to strengthen the circular bioeconomy concept. It specifically focuses on investigating the influence of key bioprocess parameters, viz. agitation and aeration rates, on enhancing rhamnolipid yield in a fed-batch fermentation mode. The methodology involves conducting experiments in a stirred tank bioreactor (3 L) using <i>Pseudomonas aeruginosa</i> gi |KP 163922| as the test organism. Central composite design and response surface methodology (CCD-RSM) are employed to design the experiments and analyze the effects of agitation and aeration rates on various parameters, including dry cell biomass (DCBM), surface tension, tensoactivity, and rhamnolipid yield. It is also essential to determine the mechanistic pathway of biosurfactant production followed by the strain using complex hydrophobic substrates such as WEO. The study reveals that optimal agitation and aeration rates of 200 rpm and 1 Lpm result in the highest biosurfactant yield of 29.76 g/L with minimal surface tension (28 mN/m). Biosurfactant characterization using FTIR, <sup>1</sup>H NMR, and UPLC-MS/MS confirm the presence of dominant molecular ion peaks m/z 543.9 and 675.1. This suggests that the biosurfactant is a mixture of mono- and di-rhamnolipids (RhaC10C10, RhaRhaC10C12:1, RhaRhaC12:1C10). The findings present a sustainable approach for biosurfactant production in a fed-batch bioreactor. This research opens the possibility of exploring the use of pilot or large-scale bioreactors for biosurfactant production in future investigations.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"35 5","pages":"803 - 818"},"PeriodicalIF":3.1000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodegradation","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10532-024-10081-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study aims to valorize waste engine oil (WEO) for synthesizing economically viable biosurfactants (rhamnolipids) to strengthen the circular bioeconomy concept. It specifically focuses on investigating the influence of key bioprocess parameters, viz. agitation and aeration rates, on enhancing rhamnolipid yield in a fed-batch fermentation mode. The methodology involves conducting experiments in a stirred tank bioreactor (3 L) using Pseudomonas aeruginosa gi |KP 163922| as the test organism. Central composite design and response surface methodology (CCD-RSM) are employed to design the experiments and analyze the effects of agitation and aeration rates on various parameters, including dry cell biomass (DCBM), surface tension, tensoactivity, and rhamnolipid yield. It is also essential to determine the mechanistic pathway of biosurfactant production followed by the strain using complex hydrophobic substrates such as WEO. The study reveals that optimal agitation and aeration rates of 200 rpm and 1 Lpm result in the highest biosurfactant yield of 29.76 g/L with minimal surface tension (28 mN/m). Biosurfactant characterization using FTIR, 1H NMR, and UPLC-MS/MS confirm the presence of dominant molecular ion peaks m/z 543.9 and 675.1. This suggests that the biosurfactant is a mixture of mono- and di-rhamnolipids (RhaC10C10, RhaRhaC10C12:1, RhaRhaC12:1C10). The findings present a sustainable approach for biosurfactant production in a fed-batch bioreactor. This research opens the possibility of exploring the use of pilot or large-scale bioreactors for biosurfactant production in future investigations.
期刊介绍:
Biodegradation publishes papers, reviews and mini-reviews on the biotransformation, mineralization, detoxification, recycling, amelioration or treatment of chemicals or waste materials by naturally-occurring microbial strains, microbial associations, or recombinant organisms.
Coverage spans a range of topics, including Biochemistry of biodegradative pathways; Genetics of biodegradative organisms and development of recombinant biodegrading organisms; Molecular biology-based studies of biodegradative microbial communities; Enhancement of naturally-occurring biodegradative properties and activities. Also featured are novel applications of biodegradation and biotransformation technology, to soil, water, sewage, heavy metals and radionuclides, organohalogens, high-COD wastes, straight-, branched-chain and aromatic hydrocarbons; Coverage extends to design and scale-up of laboratory processes and bioreactor systems. Also offered are papers on economic and legal aspects of biological treatment of waste.