{"title":"Application of deep learning and radiomics in the prediction of hematoma expansion in intracerebral hemorrhage: a fully automated hybrid approach.","authors":"Mengtian Lu, Yaqi Wang, Jiaqiang Tian, Haifeng Feng","doi":"10.4274/dir.2024.222088","DOIUrl":null,"url":null,"abstract":"PURPOSE\nSpontaneous intracerebral hemorrhage (ICH) is the most severe form of stroke. The timely assessment of early hematoma enlargement and its proper treatment are of great significance in curbing the deterioration and improving the prognosis of patients with ICH. This study aimed to develop an automated hybrid approach to predict hematoma expansion in ICH.\n\n\nMETHODS\nThe transfer learning method was applied to build a hybrid model based on a convolutional neural network (CNN) to predict the expansion of hematoma. The model integrated (1) a CNN for automated hematoma segmentation and (2) a CNN-based classifier for hematoma expansion prediction that incorporated both 2-dimensional images and the radiomics features of the 3-dimensional hematoma shape.\n\n\nRESULTS\nThe radiomics feature module had the highest area under the receiver operating characteristic curve (AUC) of 0.58, a precision of 0, a recall of 0, and an average precision (AP) of 0.26. The ResNet50 and Inception_v3 modules had AUCs of 0.79 and 0.93, a precision of 0.56 and 0.86, a recall of 0.42 and 0.75, and an AP of 0.51 and 0.85, respectively. Radiomic with Inception_v3 and Radiomic with ResNet50 had AUCs of 0.95 and 0.81, a precision of 0.90 and 0.57, a recall of 0.79 and 0.17, and an AP of 0.87 and 0.69, respectively.\n\n\nCONCLUSION\nA model using deep learning and radiomics was successfully developed. This model can reliably predict the hematoma expansion of ICH with a fully automated process based on non-contrast computed tomography imaging. Furthermore, the radiomics fusion with the Inception_v3 model had the highest accuracy.","PeriodicalId":50582,"journal":{"name":"Diagnostic and Interventional Radiology","volume":"10 10","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostic and Interventional Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4274/dir.2024.222088","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
PURPOSE
Spontaneous intracerebral hemorrhage (ICH) is the most severe form of stroke. The timely assessment of early hematoma enlargement and its proper treatment are of great significance in curbing the deterioration and improving the prognosis of patients with ICH. This study aimed to develop an automated hybrid approach to predict hematoma expansion in ICH.
METHODS
The transfer learning method was applied to build a hybrid model based on a convolutional neural network (CNN) to predict the expansion of hematoma. The model integrated (1) a CNN for automated hematoma segmentation and (2) a CNN-based classifier for hematoma expansion prediction that incorporated both 2-dimensional images and the radiomics features of the 3-dimensional hematoma shape.
RESULTS
The radiomics feature module had the highest area under the receiver operating characteristic curve (AUC) of 0.58, a precision of 0, a recall of 0, and an average precision (AP) of 0.26. The ResNet50 and Inception_v3 modules had AUCs of 0.79 and 0.93, a precision of 0.56 and 0.86, a recall of 0.42 and 0.75, and an AP of 0.51 and 0.85, respectively. Radiomic with Inception_v3 and Radiomic with ResNet50 had AUCs of 0.95 and 0.81, a precision of 0.90 and 0.57, a recall of 0.79 and 0.17, and an AP of 0.87 and 0.69, respectively.
CONCLUSION
A model using deep learning and radiomics was successfully developed. This model can reliably predict the hematoma expansion of ICH with a fully automated process based on non-contrast computed tomography imaging. Furthermore, the radiomics fusion with the Inception_v3 model had the highest accuracy.
期刊介绍:
Diagnostic and Interventional Radiology (Diagn Interv Radiol) is the open access, online-only official publication of Turkish Society of Radiology. It is published bimonthly and the journal’s publication language is English.
The journal is a medium for original articles, reviews, pictorial essays, technical notes related to all fields of diagnostic and interventional radiology.