Sparse Signal Recovery via Rescaled Matching Pursuit

Axioms Pub Date : 2024-04-24 DOI:10.3390/axioms13050288
Wan Li, Peixin Ye
{"title":"Sparse Signal Recovery via Rescaled Matching Pursuit","authors":"Wan Li, Peixin Ye","doi":"10.3390/axioms13050288","DOIUrl":null,"url":null,"abstract":"We propose the Rescaled Matching Pursuit (RMP) algorithm to recover sparse signals in high-dimensional Euclidean spaces. The RMP algorithm has less computational complexity than other greedy-type algorithms, such as Orthogonal Matching Pursuit (OMP). We show that if the restricted isometry property is satisfied, then the upper bound of the error between the original signal and its approximation can be derived. Furthermore, we prove that the RMP algorithm can find the correct support of sparse signals from random measurements with a high probability. Our numerical experiments also verify this conclusion and show that RMP is stable with the noise. So, the RMP algorithm is a suitable method for recovering sparse signals.","PeriodicalId":502355,"journal":{"name":"Axioms","volume":"17 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Axioms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/axioms13050288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose the Rescaled Matching Pursuit (RMP) algorithm to recover sparse signals in high-dimensional Euclidean spaces. The RMP algorithm has less computational complexity than other greedy-type algorithms, such as Orthogonal Matching Pursuit (OMP). We show that if the restricted isometry property is satisfied, then the upper bound of the error between the original signal and its approximation can be derived. Furthermore, we prove that the RMP algorithm can find the correct support of sparse signals from random measurements with a high probability. Our numerical experiments also verify this conclusion and show that RMP is stable with the noise. So, the RMP algorithm is a suitable method for recovering sparse signals.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过重标度匹配追求实现稀疏信号恢复
我们提出了在高维欧氏空间中恢复稀疏信号的重标度匹配追求(RMP)算法。RMP 算法的计算复杂度低于其他贪婪型算法,如正交匹配追求算法(OMP)。我们证明,如果满足受限等距特性,那么就能得出原始信号与其近似值之间的误差上限。此外,我们还证明了 RMP 算法能以很高的概率从随机测量中找到稀疏信号的正确支持。我们的数值实验也验证了这一结论,并表明 RMP 算法在噪声下是稳定的。因此,RMP 算法是恢复稀疏信号的合适方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Geometry of Torsion Gerbes and Flat Twisted Vector Bundles The Unified Description of Abstract Convexity Structures Modelling Up-and-Down Moves of Binomial Option Pricing with Intuitionistic Fuzzy Numbers The Impact of Quasi-Conformal Curvature Tensor on Warped Product Manifolds On Lebesgue Constants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1