Arctic cyanobacterial mat community diversity decreases with latitude across the Canadian Arctic.

IF 3.5 3区 生物学 Q2 MICROBIOLOGY FEMS microbiology ecology Pub Date : 2024-04-23 DOI:10.1093/femsec/fiae067
P. M. Hooper, D. Bass, E. J. Feil, W. F. Vincent, C. Lovejoy, C. J. Owen, S. Tsola, A. Jungblut
{"title":"Arctic cyanobacterial mat community diversity decreases with latitude across the Canadian Arctic.","authors":"P. M. Hooper, D. Bass, E. J. Feil, W. F. Vincent, C. Lovejoy, C. J. Owen, S. Tsola, A. Jungblut","doi":"10.1093/femsec/fiae067","DOIUrl":null,"url":null,"abstract":"Cyanobacterial mats are commonly reported as hotspots of microbial diversity across polar environments. These thick, multi-layered microbial communities provide a refuge from extreme environmental conditions, with many species able to grow and coexist despite the low allochthonous nutrient inputs. The visibly dominant phototrophic biomass is dependent on internal nutrient recycling by heterotrophic organisms within the mats, however the specific contribution of heterotrophic protists remains little explored. In this study, mat community diversity was examined along a latitudinal gradient (55-83°N), spanning subarctic taiga, tundra, polar desert, and the High Arctic ice shelves. The prokaryotic and eukaryotic communities were targeted respectively by V4 16S and V9 18S rRNA gene amplicon high-throughput sequencing. Prokaryotic and eukaryotic richness decreased, in tandem with decreasing temperatures and shorter seasons of light availability, from the subarctic to the High Arctic. Taxonomy-based annotation of the protist community revealed diverse phototrophic, mixotrophic and heterotrophic genera in all mat communities, with fewer parasitic taxa in High Arctic communities. Co-occurrence network analysis identified greater heterogeneity in eukaryotic than prokaryotic community structure among cyanobacterial mats across the Canadian Arctic. Our findings highlight the sensitivity of microbial eukaryotes to environmental gradients across northern high latitudes.","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS microbiology ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsec/fiae067","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cyanobacterial mats are commonly reported as hotspots of microbial diversity across polar environments. These thick, multi-layered microbial communities provide a refuge from extreme environmental conditions, with many species able to grow and coexist despite the low allochthonous nutrient inputs. The visibly dominant phototrophic biomass is dependent on internal nutrient recycling by heterotrophic organisms within the mats, however the specific contribution of heterotrophic protists remains little explored. In this study, mat community diversity was examined along a latitudinal gradient (55-83°N), spanning subarctic taiga, tundra, polar desert, and the High Arctic ice shelves. The prokaryotic and eukaryotic communities were targeted respectively by V4 16S and V9 18S rRNA gene amplicon high-throughput sequencing. Prokaryotic and eukaryotic richness decreased, in tandem with decreasing temperatures and shorter seasons of light availability, from the subarctic to the High Arctic. Taxonomy-based annotation of the protist community revealed diverse phototrophic, mixotrophic and heterotrophic genera in all mat communities, with fewer parasitic taxa in High Arctic communities. Co-occurrence network analysis identified greater heterogeneity in eukaryotic than prokaryotic community structure among cyanobacterial mats across the Canadian Arctic. Our findings highlight the sensitivity of microbial eukaryotes to environmental gradients across northern high latitudes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
加拿大北极地区的北极蓝藻垫群落多样性随纬度降低而减少。
据报道,蓝藻垫通常是极地环境中微生物多样性的热点。这些厚厚的多层微生物群落是极端环境条件下的避难所,尽管同源营养物质输入量很低,但许多物种仍能生长和共存。明显占优势的光养生物量依赖于藓垫中异养生物的内部营养循环,但对异养原生生物的具体贡献仍鲜有探索。本研究沿纬度梯度(55-83°N)考察了垫状群落的多样性,横跨亚北极针叶林、苔原、极地沙漠和北极高纬度冰架。原核生物群落和真核生物群落分别以 V4 16S 和 V9 18S rRNA 基因扩增子高通量测序为目标。从亚北极到高北极,原核生物和真核生物的丰富度随着温度的降低和光照季节的缩短而下降。基于分类学的原生生物群落注释显示,所有垫层生物群落中都有多种光养属、混养属和异养属,而北极高纬度群落中的寄生类群较少。共现网络分析发现,加拿大北极地区蓝藻垫中真核生物群落结构的异质性大于原核生物群落结构。我们的研究结果凸显了微生物真核生物对北部高纬度地区环境梯度的敏感性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
FEMS microbiology ecology
FEMS microbiology ecology 生物-微生物学
CiteScore
7.50
自引率
2.40%
发文量
132
审稿时长
3 months
期刊介绍: FEMS Microbiology Ecology aims to ensure efficient publication of high-quality papers that are original and provide a significant contribution to the understanding of microbial ecology. The journal contains Research Articles and MiniReviews on fundamental aspects of the ecology of microorganisms in natural soil, aquatic and atmospheric habitats, including extreme environments, and in artificial or managed environments. Research papers on pure cultures and in the areas of plant pathology and medical, food or veterinary microbiology will be published where they provide valuable generic information on microbial ecology. Papers can deal with culturable and non-culturable forms of any type of microorganism: bacteria, archaea, filamentous fungi, yeasts, protozoa, cyanobacteria, algae or viruses. In addition, the journal will publish Perspectives, Current Opinion and Controversy Articles, Commentaries and Letters to the Editor on topical issues in microbial ecology. - Application of ecological theory to microbial ecology - Interactions and signalling between microorganisms and with plants and animals - Interactions between microorganisms and their physicochemical enviornment - Microbial aspects of biogeochemical cycles and processes - Microbial community ecology - Phylogenetic and functional diversity of microbial communities - Evolutionary biology of microorganisms
期刊最新文献
Organic farming systems improve soil quality and shape microbial communities across a cotton-based crop rotation in an Indian Vertisol Geothermal ecosystems on Mt. Erebus, Antarctica, support diverse and taxonomically novel biota Transient hypoxia drives soil microbial community dynamics and biogeochemistry during human decomposition Terrestrialization of sediment bacterial assemblages when temporary rivers run dry Microbial Ecology of Nitrate-, Selenate-, Selenite-, and Sulfate-Reducing Bacteria in a H2-Driven Bioprocess
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1