Steady but model dependent Arctic amplification of the forced temperature response in 21st century CMIP6 projections

Stephanie Hay, J. Screen, J. Catto
{"title":"Steady but model dependent Arctic amplification of the forced temperature response in 21st century CMIP6 projections","authors":"Stephanie Hay, J. Screen, J. Catto","doi":"10.1088/2752-5295/ad4201","DOIUrl":null,"url":null,"abstract":"\n We examine sources of uncertainty in projections of Arctic Amplification (AA) using the CMIP6 multi-model ensemble and single model initial-condition large ensembles of historical and future scenario simulations. In the CMIP6 multi-model mean, the annual mean AA ratio is steady at approximately 2.5, both in time and across scenarios, resulting in negligibly small scenario uncertainty in the magnitude of AA. Deviations from the steady value can be found at the low and high emission scenarios due to different root causes, with the latter being mostly evident in the summer and autumn seasons. Best estimates of model uncertainty are at least an order of magnitude larger than scenario uncertainty in CMIP6. The large ensembles reveal that irreducible internal variability has a similar magnitude to model uncertainty for most of the 21st century, except in the lowest emission scenario at the end of the 21st century when it could be twice as large.","PeriodicalId":432508,"journal":{"name":"Environmental Research: Climate","volume":"136 27","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research: Climate","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2752-5295/ad4201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We examine sources of uncertainty in projections of Arctic Amplification (AA) using the CMIP6 multi-model ensemble and single model initial-condition large ensembles of historical and future scenario simulations. In the CMIP6 multi-model mean, the annual mean AA ratio is steady at approximately 2.5, both in time and across scenarios, resulting in negligibly small scenario uncertainty in the magnitude of AA. Deviations from the steady value can be found at the low and high emission scenarios due to different root causes, with the latter being mostly evident in the summer and autumn seasons. Best estimates of model uncertainty are at least an order of magnitude larger than scenario uncertainty in CMIP6. The large ensembles reveal that irreducible internal variability has a similar magnitude to model uncertainty for most of the 21st century, except in the lowest emission scenario at the end of the 21st century when it could be twice as large.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在 21 世纪 CMIP6 预测中,强迫温度响应在北极的稳定放大但取决于模型
我们利用 CMIP6 多模式集合和单一模式初始条件大型历史和未来情景模拟集合,研究了北极增温(AA)预测的不确定性来源。在 CMIP6 多模式平均值中,年平均 AA 比率在不同时间和不同情景下都稳定在 2.5 左右,因此 AA 幅值的情景不确定性极小,可以忽略不计。在低排放和高排放情景下,由于不同的根本原因,会出现与稳定值的偏差,后者主要体现在夏季和秋季。对模型不确定性的最佳估计至少比 CMIP6 中情景的不确定性大一个数量级。大型集合显示,在 21 世纪的大部分时间里,不可还原的内部变率与模式不确定性的大小相似,但在 21 世纪末的最低排放情景下除外,因为在该情景下,不可还原的内部变率可能是模式不确定性的两倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improvement of decadal predictions of monthly extreme Mei-yu rainfall via a causality guided approach Climate classification systems for validating Earth system models Net evaporation-induced mangrove area loss across low-lying Caribbean islands Using analogues to predict changes in future UK heatwaves Linking local climate scenarios to global warming levels: applicability, prospects and uncertainties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1