Polyurethane foam reinforced with Ag nanoparticle decorated ZnO nanorods: a dual-functional approach for improved antibacterial and mechanical properties
{"title":"Polyurethane foam reinforced with Ag nanoparticle decorated ZnO nanorods: a dual-functional approach for improved antibacterial and mechanical properties","authors":"Z. Farrokhi, M. Kanvisi, Ali Ayati","doi":"10.1515/ipp-2023-4453","DOIUrl":null,"url":null,"abstract":"\n This study introduces a novel approach by incorporating pristine ZnO nanorods and Ag nanoparticles decorated ZnO nanorods into a polyurethane foam matrix. This synergistic combination aims to enhance the foam’s antibacterial properties while investigating its impact on mechanical strength. Nanoparticles and prepared nanopolymer were characterized by different methods like XRD, TEM, SEM, and EDS. The mechanical characteristics and antibacterial properties of prepared polyurethane composites were investigated in the presence of Escherichia coli and Bacillus subtilis. A much higher level than reported in the literature was found for PU films filled with ZnO nanorods. Incorporating nanoparticles into polyurethane nanocomposites has been demonstrated to significantly improve polyurethane’s antibacterial properties. The results revealed that ZnO/PU antibacterial efficiency decreased with increasing ZnO nanofiller content, while AgNPs@ZnO/PU composite antibacterial efficiency increased with increasing AgNPs@ZnO nanofiller content. Also, the weak coordinate bond between ZnO and Ag in the PU chain extender was demonstrated. Increasing the ZnO content to 1.4 wt% resulted in greater Young’s modulus and tensile strength, which increased when the ZnO content was increased further. Such a dual-functional enhancement holds promise for applications requiring both antimicrobial efficacy and mechanical integrity.","PeriodicalId":14410,"journal":{"name":"International Polymer Processing","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Polymer Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ipp-2023-4453","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study introduces a novel approach by incorporating pristine ZnO nanorods and Ag nanoparticles decorated ZnO nanorods into a polyurethane foam matrix. This synergistic combination aims to enhance the foam’s antibacterial properties while investigating its impact on mechanical strength. Nanoparticles and prepared nanopolymer were characterized by different methods like XRD, TEM, SEM, and EDS. The mechanical characteristics and antibacterial properties of prepared polyurethane composites were investigated in the presence of Escherichia coli and Bacillus subtilis. A much higher level than reported in the literature was found for PU films filled with ZnO nanorods. Incorporating nanoparticles into polyurethane nanocomposites has been demonstrated to significantly improve polyurethane’s antibacterial properties. The results revealed that ZnO/PU antibacterial efficiency decreased with increasing ZnO nanofiller content, while AgNPs@ZnO/PU composite antibacterial efficiency increased with increasing AgNPs@ZnO nanofiller content. Also, the weak coordinate bond between ZnO and Ag in the PU chain extender was demonstrated. Increasing the ZnO content to 1.4 wt% resulted in greater Young’s modulus and tensile strength, which increased when the ZnO content was increased further. Such a dual-functional enhancement holds promise for applications requiring both antimicrobial efficacy and mechanical integrity.
期刊介绍:
International Polymer Processing offers original research contributions, invited review papers and recent technological developments in processing thermoplastics, thermosets, elastomers and fibers as well as polymer reaction engineering. For more than 25 years International Polymer Processing, the journal of the Polymer Processing Society, provides strictly peer-reviewed, high-quality articles and rapid communications from the leading experts around the world.