Comparison of full fiber coupled interferometer systems under vacuum conditions

Martin Meier, C. Weichert, Jan Kawohl, Jens Flügge, Eberhard Manske
{"title":"Comparison of full fiber coupled interferometer systems under vacuum conditions","authors":"Martin Meier, C. Weichert, Jan Kawohl, Jens Flügge, Eberhard Manske","doi":"10.1515/teme-2024-0011","DOIUrl":null,"url":null,"abstract":"\n The PTB built a comparator setup for testing length measuring systems under vacuum conditions. The setup is equipped with a linear stage which is operated in a closed loop using the feedback of a 1.5D encoder system with three encoder heads for length and vertical rotation angle and exhibits a movement range of 150 mm. The main measurement system is a heterodyne interferometer with periodic nonlinearities with amplitudes below 10 pm. The comparator setup was characterized using a mirror mounted on the stage reflecting the measurement as well as the reference beams. By these means, the resolution, the stability of the setup as well as the influence of guiding errors on position-dependent measurement deviations of the fully fiber coupled interferometer were investigated. A position-depending error was observed which was resulting from the variation of the performance of the coupling into the multi-mode fibers used to transfer the superposed beams to the photoreceivers. The measured deviations were 1.5 nm or 0.2 nm over 70 mm travel range depending on the core diameter of the multi-mode fibers of 50 µm and 200 µm, respectively. Three different commercial fiber interferometer systems were analysed under vacuum conditions with the comparator setup. All tested systems are working with light sources with a wavelength of approximately 1535 nm but differ in the amplitude of their periodic nonlinearities in the range between 10 pm and 29 nm. The tests of their resolution and stability were limited by vibrations in the comparator setup and the lack of adequate synchronization capabilities of the data acquisition of these systems.","PeriodicalId":509687,"journal":{"name":"tm - Technisches Messen","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"tm - Technisches Messen","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/teme-2024-0011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The PTB built a comparator setup for testing length measuring systems under vacuum conditions. The setup is equipped with a linear stage which is operated in a closed loop using the feedback of a 1.5D encoder system with three encoder heads for length and vertical rotation angle and exhibits a movement range of 150 mm. The main measurement system is a heterodyne interferometer with periodic nonlinearities with amplitudes below 10 pm. The comparator setup was characterized using a mirror mounted on the stage reflecting the measurement as well as the reference beams. By these means, the resolution, the stability of the setup as well as the influence of guiding errors on position-dependent measurement deviations of the fully fiber coupled interferometer were investigated. A position-depending error was observed which was resulting from the variation of the performance of the coupling into the multi-mode fibers used to transfer the superposed beams to the photoreceivers. The measured deviations were 1.5 nm or 0.2 nm over 70 mm travel range depending on the core diameter of the multi-mode fibers of 50 µm and 200 µm, respectively. Three different commercial fiber interferometer systems were analysed under vacuum conditions with the comparator setup. All tested systems are working with light sources with a wavelength of approximately 1535 nm but differ in the amplitude of their periodic nonlinearities in the range between 10 pm and 29 nm. The tests of their resolution and stability were limited by vibrations in the comparator setup and the lack of adequate synchronization capabilities of the data acquisition of these systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
真空条件下全光纤耦合干涉仪系统的比较
PTB 建立了一个比较仪装置,用于在真空条件下测试长度测量系统。该装置配备了一个线性平台,利用 1.5D 编码器系统的反馈进行闭环操作,该系统有三个编码器头,用于测量长度和垂直旋转角度,移动范围为 150 毫米。主要测量系统是一个外差干涉仪,具有振幅低于 10 pm 的周期性非线性。比较器装置的特点是使用安装在平台上的反射镜反射测量光束和参考光束。通过这些方法,研究了全光纤耦合干涉仪的分辨率、设置的稳定性以及导向误差对随位置变化的测量偏差的影响。观察到的位置相关误差是由于用于将叠加光束传输到光接收器的多模光纤的耦合性能变化造成的。根据 50 微米和 200 微米的多模光纤纤芯直径,在 70 毫米行程范围内测得的偏差分别为 1.5 纳米或 0.2 纳米。在真空条件下,使用比较仪装置对三种不同的商用光纤干涉仪系统进行了分析。所有测试系统都使用波长约为 1535 nm 的光源,但在 10 pm 至 29 nm 范围内的周期性非线性振幅有所不同。对这些系统的分辨率和稳定性的测试受到了比较仪装置的振动以及这些系统的数据采集同步能力不足的限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Metrology for sensor networks: metrological traceability and measurement uncertainties for air quality monitoring Combination of generic novelty detection and supervised classification pipelines for industrial condition monitoring Kalibrierung und Messunsicherheitsbetrachtung eines medizinischen Bohrers mit integrierter Temperatursensorik zur Minimierung des Patientenrisikos bei minimalinvasiven Bohrungen an der lateralen Schädelbasis Der Einfluss der Messunsicherheit in der Materialprüfung – Von der Messmittelauswahl zur Konformitätsaussage am Beispiel des Zugversuchs bei erhöhter Temperatur nach DIN EN ISO 6892-2:2018-09 Tagung Messunsicherheit Erfurt 2023
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1