Linking cumulative carbon emissions to observable climate impacts

Claude-Michel Nzotungicimpaye, H. D. Matthews
{"title":"Linking cumulative carbon emissions to observable climate impacts","authors":"Claude-Michel Nzotungicimpaye, H. D. Matthews","doi":"10.1088/2752-5295/ad3fda","DOIUrl":null,"url":null,"abstract":"\n Anthropogenic CO2 emissions are causing climate change, and impacts of climate change are already affecting every region on Earth. The purpose of this review is to investigate climate impacts that can be linked quantitatively to cumulative CO2 emissions (CE), with a focus on impacts scaling linearly with CE. The reviewed studies indicate a proportionality between CE and various observable climate impacts such as regional warming, extreme daily temperatures, heavy precipitation events, seasonal changes in temperature and precipitation, global mean precipitation increase over ocean, sea ice decline in September across the Arctic Ocean, surface ocean acidification, global mean sea level rise, different marine heatwave characteristics, changes in habitat viability for non-human primates, as well as labour productivity loss due to extreme heat exposure. From the reviewed literature, we report estimates of these climate impacts resulting from one trillion tonne of CE (1 Tt C). These estimates are highly relevant for climate policy as they provide a way for assessing climate impacts associated with every amount of CO2 emitted by human activities. With the goal of expanding the number of climate impacts that could be linked quantitatively to CE, we propose a framework for estimating additional climate impacts resulting from CE. This framework builds on the transient climate response to cumulative emissions (TCRE), and it is applicable to climate impacts that scale linearly with global warming. We illustrate how the framework can be applied to quantify physical, biological, and societal climate impacts resulting from CE. With this review, we highlight that each tonne of CO2 emissions matters in terms of resulting impacts on natural and human systems.","PeriodicalId":432508,"journal":{"name":"Environmental Research: Climate","volume":" 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research: Climate","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2752-5295/ad3fda","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Anthropogenic CO2 emissions are causing climate change, and impacts of climate change are already affecting every region on Earth. The purpose of this review is to investigate climate impacts that can be linked quantitatively to cumulative CO2 emissions (CE), with a focus on impacts scaling linearly with CE. The reviewed studies indicate a proportionality between CE and various observable climate impacts such as regional warming, extreme daily temperatures, heavy precipitation events, seasonal changes in temperature and precipitation, global mean precipitation increase over ocean, sea ice decline in September across the Arctic Ocean, surface ocean acidification, global mean sea level rise, different marine heatwave characteristics, changes in habitat viability for non-human primates, as well as labour productivity loss due to extreme heat exposure. From the reviewed literature, we report estimates of these climate impacts resulting from one trillion tonne of CE (1 Tt C). These estimates are highly relevant for climate policy as they provide a way for assessing climate impacts associated with every amount of CO2 emitted by human activities. With the goal of expanding the number of climate impacts that could be linked quantitatively to CE, we propose a framework for estimating additional climate impacts resulting from CE. This framework builds on the transient climate response to cumulative emissions (TCRE), and it is applicable to climate impacts that scale linearly with global warming. We illustrate how the framework can be applied to quantify physical, biological, and societal climate impacts resulting from CE. With this review, we highlight that each tonne of CO2 emissions matters in terms of resulting impacts on natural and human systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将累积碳排放与可观测到的气候影响联系起来
人为二氧化碳排放正在引起气候变化,而气候变化的影响已经影响到地球上的每一个地区。本综述的目的是研究可与累积二氧化碳排放量(CE)定量联系起来的气候影响,重点是与 CE 成线性比例的影响。综述的研究表明,CE 与各种可观测到的气候影响之间存在比例关系,如区域变暖、极端日气温、强降水事件、气温和降水的季节性变化、全球海洋平均降水量增加、北冰洋九月海冰减少、表层海洋酸化、全球平均海平面上升、不同的海洋热浪特征、非人灵长类动物栖息地生存能力的变化,以及极端高温暴露造成的劳动生产率损失。根据所查阅的文献,我们报告了一万亿吨二氧化碳当量(1 Tt C)对这些气候影响的估计值。这些估计值与气候政策高度相关,因为它们为评估与人类活动排放的每一二氧化碳量相关的气候影响提供了一种方法。为了扩大可与二氧化碳排放量定量联系起来的气候影响的数量,我们提出了一个估算二氧化碳排放量造成的额外气候影响的框架。该框架以累积排放的瞬态气候响应(TCRE)为基础,适用于与全球变暖成线性比例的气候影响。我们说明了如何将该框架应用于量化气候变化对物理、生物和社会造成的气候影响。通过这一回顾,我们强调每吨二氧化碳的排放都会对自然和人类系统产生影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improvement of decadal predictions of monthly extreme Mei-yu rainfall via a causality guided approach Climate classification systems for validating Earth system models Net evaporation-induced mangrove area loss across low-lying Caribbean islands Using analogues to predict changes in future UK heatwaves Linking local climate scenarios to global warming levels: applicability, prospects and uncertainties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1