Quantifying uncertainty in simulations of the West African monsoon with the use of surrogate models

Matthias Fischer, P. Knippertz, Roderick van der Linden, Alexander Lemburg, Gregor Pante, Carsten Proppe, J. Marsham
{"title":"Quantifying uncertainty in simulations of the West African monsoon with the use of surrogate models","authors":"Matthias Fischer, P. Knippertz, Roderick van der Linden, Alexander Lemburg, Gregor Pante, Carsten Proppe, J. Marsham","doi":"10.5194/wcd-5-511-2024","DOIUrl":null,"url":null,"abstract":"Abstract. Simulating the West African monsoon (WAM) system using numerical weather and climate models suffers from large uncertainties, which are difficult to assess due to nonlinear interactions between different components of the WAM. Here we present a fundamentally new approach to the problem by approximating the behavior of a numerical model – here the Icosahedral Nonhydrostatic (ICON) model – through a statistical surrogate model based on universal kriging, a general form of Gaussian process regression, which allows for a comprehensive global sensitivity analysis. The main steps of our analysis are as follows: (i) identify the most important uncertain model parameters and their probability density functions, for which we employ a new strategy dealing with non-uniformity in the kriging process. (ii) Define quantities of interest (QoIs) that represent general meteorological fields, such as temperature, pressure, cloud cover and precipitation, as well as the prominent WAM features, namely the tropical easterly jet, African easterly jet, Saharan heat low (SHL) and intertropical discontinuity. (iii) Apply a sampling strategy with regard to the kriging method to identify model parameter combinations which are used for numerical modeling experiments. (iv) Conduct ICON model runs for identified model parameter combinations over a nested limited-area domain from 28° W to 34° E and from 10° S to 34° N. The simulations are run for August in 4 different years (2016 to 2019) to capture the peak northward penetration of rainfall into West Africa, and QoIs are computed based on the mean response over the whole month in all years. (v) Quantify sensitivity of QoIs to uncertain model parameters in an integrated and a local analysis. The results show that simple isolated relationships between single model parameters and WAM QoIs rarely exist. Changing individual parameters affects multiple QoIs simultaneously, reflecting the physical links between them and the complexity of the WAM system. The entrainment rate in the convection scheme and the terminal fall velocity of ice particles show the greatest effects on the QoIs. Larger values of these two parameters reduce cloud cover and precipitation and intensify the SHL. The entrainment rate primarily affects 2 m temperature and 2 m dew point temperature and causes latitudinal shifts, whereas the terminal fall velocity of ice mostly affects cloud cover. Furthermore, the parameter that controls the evaporative soil surface has a major effect on 2 m temperature, 2 m dew point temperature and cloud cover. The results highlight the usefulness of surrogate models for the analysis of model uncertainty and open up new opportunities to better constrain model parameters through a comparison of the model output with selected observations.\n","PeriodicalId":508985,"journal":{"name":"Weather and Climate Dynamics","volume":"63 1‐2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Weather and Climate Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/wcd-5-511-2024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. Simulating the West African monsoon (WAM) system using numerical weather and climate models suffers from large uncertainties, which are difficult to assess due to nonlinear interactions between different components of the WAM. Here we present a fundamentally new approach to the problem by approximating the behavior of a numerical model – here the Icosahedral Nonhydrostatic (ICON) model – through a statistical surrogate model based on universal kriging, a general form of Gaussian process regression, which allows for a comprehensive global sensitivity analysis. The main steps of our analysis are as follows: (i) identify the most important uncertain model parameters and their probability density functions, for which we employ a new strategy dealing with non-uniformity in the kriging process. (ii) Define quantities of interest (QoIs) that represent general meteorological fields, such as temperature, pressure, cloud cover and precipitation, as well as the prominent WAM features, namely the tropical easterly jet, African easterly jet, Saharan heat low (SHL) and intertropical discontinuity. (iii) Apply a sampling strategy with regard to the kriging method to identify model parameter combinations which are used for numerical modeling experiments. (iv) Conduct ICON model runs for identified model parameter combinations over a nested limited-area domain from 28° W to 34° E and from 10° S to 34° N. The simulations are run for August in 4 different years (2016 to 2019) to capture the peak northward penetration of rainfall into West Africa, and QoIs are computed based on the mean response over the whole month in all years. (v) Quantify sensitivity of QoIs to uncertain model parameters in an integrated and a local analysis. The results show that simple isolated relationships between single model parameters and WAM QoIs rarely exist. Changing individual parameters affects multiple QoIs simultaneously, reflecting the physical links between them and the complexity of the WAM system. The entrainment rate in the convection scheme and the terminal fall velocity of ice particles show the greatest effects on the QoIs. Larger values of these two parameters reduce cloud cover and precipitation and intensify the SHL. The entrainment rate primarily affects 2 m temperature and 2 m dew point temperature and causes latitudinal shifts, whereas the terminal fall velocity of ice mostly affects cloud cover. Furthermore, the parameter that controls the evaporative soil surface has a major effect on 2 m temperature, 2 m dew point temperature and cloud cover. The results highlight the usefulness of surrogate models for the analysis of model uncertainty and open up new opportunities to better constrain model parameters through a comparison of the model output with selected observations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用替代模型量化西非季风模拟的不确定性
摘要使用天气和气候数值模式模拟西非季风(WAM)系统存在很大的不确定性,由于西非季风系统不同组成部分之间的非线性相互作用,这些不确定性很难评估。在这里,我们提出了一种解决这一问题的全新方法,即通过基于通用克里金(高斯过程回归的一种一般形式)的统计替代模型,对数值模式(这里是二十面体非流体静力学(ICON)模式)的行为进行近似,从而进行全面的全球敏感性分析。我们分析的主要步骤如下:(i) 确定最重要的不确定模型参数及其概率密度函数,为此我们采用了一种新策略来处理克里金过程中的不均匀性。(ii) 确定代表一般气象领域(如温度、气压、云量和降水)的相关量(QoIs),以及世界气象组织的显著特征,即热带东风喷流、非洲东风喷流、撒哈拉热低层(SHL)和热带间不连续性。(iii) 采用克里格法采样策略,确定用于数值模拟实验的模式参数组合。(iv) 在西经 28 度至东经 34 度和南纬 10 度至北纬 34 度的嵌套有限区域内,对确定的模式参数组合进行 ICON 模式运行。模拟在 4 个不同年份(2016 年至 2019 年)的 8 月份进行,以捕捉降雨向北渗透到西非的峰值,并根据所有年份整个月份的平均响应计算 QoIs。(v) 在综合和局部分析中量化 QoIs 对不确定模型参数的敏感性。结果表明,单一模型参数与水文学气象学质量指标之间很少存在简单孤立的关系。改变单个参数会同时影响多个质量指标,这反映了它们之间的物理联系和水文学测量系统的复杂性。对流方案中的夹带率和冰颗粒的末端下落速度对质量指标的影响最大。这两个参数值越大,云量和降水量越少,SHL 越强。夹带率主要影响 2 米温度和 2 米露点温度,并导致纬度偏移,而冰粒末端下落速度主要影响云量。此外,控制土壤蒸发面的参数对 2 米气温、2 米露点温度和云量有很大影响。这些结果凸显了代用模式在分析模式不确定性方面的作用,并为通过比较模式输出与选定观测数据来更好地约束模式参数提供了新的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring the daytime boundary layer evolution based on Doppler spectrum width from multiple coplanar wind lidars during CROSSINN Understanding winter windstorm predictability over Europe How heating tracers drive self-lofting long-lived stratospheric anticyclones: simple dynamical models Warm conveyor belt characteristics and impacts along the life cycle of extratropical cyclones: case studies and climatological analysis based on ERA5 Quantifying uncertainty in simulations of the West African monsoon with the use of surrogate models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1