Chahinez Triqui, Ilyes Zatla, Wafaa Lemerini, Nora Benmadani, Mohammed Charaf Eddine Houari, S. Gaouar, N. Soulimane
{"title":"Navigating the molecular diversity of SARS-CoV-2: early pandemic insights from comparative phylogenetic analysis","authors":"Chahinez Triqui, Ilyes Zatla, Wafaa Lemerini, Nora Benmadani, Mohammed Charaf Eddine Houari, S. Gaouar, N. Soulimane","doi":"10.5584/jiomics.v14i1.228","DOIUrl":null,"url":null,"abstract":"The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in December 2019 precipitated the onset of the COVID-19 pandemic, which swiftly spread across more than 214 countries and territories, posing a significant global health crisis. In response, laboratories worldwide have embarked on extensive efforts to characterize the genomic landscape of the virus, employing a myriad of sophisticated genomic analysis techniques. This study endeavors to undertake a comprehensive exploration into the genetic diversity, geographical distribution, and virulence determinants of SARS-CoV-2 clades across 11 diverse countries, employing advanced computational biology methodologies. Leveraging molecular data sourced from prominent international databases, the analysis aims to unravel the intricate phylogenetic relationships and mutational dynamics exhibited by various viral strains circulating worldwide. The findings of this investigation promise to yield invaluable insights into the evolutionary trajectory of SARS-CoV-2, shedding light on potential therapeutic targets and informing strategies for mitigating the impact of the ongoing pandemic on global public health. Results highlight significant genetic diversity among SARS-CoV-2 strains across different countries, with phylogenetic analysis revealing distinct subclass groupings within each country. A manual comparison of sequences identified numerous mutations, with certain mutations associated with increased virulence. Comparison of clade G and clade O sequences revealed differences in mutation profiles, suggesting potential links to virulence and transmissibility. These findings underscore the dynamic nature of SARS-CoV-2 evolution and the importance of monitoring genetic changes for public health interventions.","PeriodicalId":37675,"journal":{"name":"Journal of Integrated OMICS","volume":"39 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrated OMICS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5584/jiomics.v14i1.228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in December 2019 precipitated the onset of the COVID-19 pandemic, which swiftly spread across more than 214 countries and territories, posing a significant global health crisis. In response, laboratories worldwide have embarked on extensive efforts to characterize the genomic landscape of the virus, employing a myriad of sophisticated genomic analysis techniques. This study endeavors to undertake a comprehensive exploration into the genetic diversity, geographical distribution, and virulence determinants of SARS-CoV-2 clades across 11 diverse countries, employing advanced computational biology methodologies. Leveraging molecular data sourced from prominent international databases, the analysis aims to unravel the intricate phylogenetic relationships and mutational dynamics exhibited by various viral strains circulating worldwide. The findings of this investigation promise to yield invaluable insights into the evolutionary trajectory of SARS-CoV-2, shedding light on potential therapeutic targets and informing strategies for mitigating the impact of the ongoing pandemic on global public health. Results highlight significant genetic diversity among SARS-CoV-2 strains across different countries, with phylogenetic analysis revealing distinct subclass groupings within each country. A manual comparison of sequences identified numerous mutations, with certain mutations associated with increased virulence. Comparison of clade G and clade O sequences revealed differences in mutation profiles, suggesting potential links to virulence and transmissibility. These findings underscore the dynamic nature of SARS-CoV-2 evolution and the importance of monitoring genetic changes for public health interventions.
期刊介绍:
JIOMICS provides a forum for the publication of original research papers, letters to the editor, short communications, and critical reviews in all branches of pure and applied –omics subjects, such as proteomics, metabolomics, metallomics and genomics. Especial interest is given to papers where more than one –omics subject is covered. Papers are evaluated based on scientific novelty and demonstrated scientific applicability. Original research papers on fundamental studies, and novel sensor and instrumentation development, are especially encouraged. Novel or improved findings in areas such as clinical, medicinal, biological, environmental and materials –omics are welcome.