Miao Liu, Zesen Wang, Guangming Xin, Qi Li, Shuaihao Kong
{"title":"Investigation of Quantitative Assessment Techniques for Supply-Regulation Capability in Multi-Scenario New-Type Power Systems","authors":"Miao Liu, Zesen Wang, Guangming Xin, Qi Li, Shuaihao Kong","doi":"10.4108/ew.5720","DOIUrl":null,"url":null,"abstract":"This paper offers an in-depth investigation into various quantitative assessment methods used to quantify the supply regulation capacity in new types of power systems under different conditions. As new forms of energy, including renewables, are increasingly becoming the predominant sources of power systems, the traditional systems are undergoing transformative modifications to efficiently address the issue of power generation and consumption fluctuations. In this regard, this paper proposes an original framework that combines advanced statistical methods and machine learning. The primary purpose of the framework is to identify the level of resilience and flexible adaptability of new power systems. The paper presents the results of the simulations and real-world applications of the proposed measurement methods in enhancing power supply reliability and efficiency in all conditions. The implications based on the results will be beneficial to policymakers and other specialists who are making decisions involving designing and optimizing modern power systems. Furthermore, the paper aims to contribute to the existing discussion by providing further insights into the effectiveness of the proposed methods of measurement.","PeriodicalId":53458,"journal":{"name":"EAI Endorsed Transactions on Energy Web","volume":"9 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EAI Endorsed Transactions on Energy Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/ew.5720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
This paper offers an in-depth investigation into various quantitative assessment methods used to quantify the supply regulation capacity in new types of power systems under different conditions. As new forms of energy, including renewables, are increasingly becoming the predominant sources of power systems, the traditional systems are undergoing transformative modifications to efficiently address the issue of power generation and consumption fluctuations. In this regard, this paper proposes an original framework that combines advanced statistical methods and machine learning. The primary purpose of the framework is to identify the level of resilience and flexible adaptability of new power systems. The paper presents the results of the simulations and real-world applications of the proposed measurement methods in enhancing power supply reliability and efficiency in all conditions. The implications based on the results will be beneficial to policymakers and other specialists who are making decisions involving designing and optimizing modern power systems. Furthermore, the paper aims to contribute to the existing discussion by providing further insights into the effectiveness of the proposed methods of measurement.
期刊介绍:
With ICT pervading everyday objects and infrastructures, the ‘Future Internet’ is envisioned to undergo a radical transformation from how we know it today (a mere communication highway) into a vast hybrid network seamlessly integrating knowledge, people and machines into techno-social ecosystems whose behaviour transcends the boundaries of today’s engineering science. As the internet of things continues to grow, billions and trillions of data bytes need to be moved, stored and shared. The energy thus consumed and the climate impact of data centers are increasing dramatically, thereby becoming significant contributors to global warming and climate change. As reported recently, the combined electricity consumption of the world’s data centers has already exceeded that of some of the world''s top ten economies. In the ensuing process of integrating traditional and renewable energy, monitoring and managing various energy sources, and processing and transferring technological information through various channels, IT will undoubtedly play an ever-increasing and central role. Several technologies are currently racing to production to meet this challenge, from ‘smart dust’ to hybrid networks capable of controlling the emergence of dependable and reliable green and energy-efficient ecosystems – which we generically term the ‘energy web’ – calling for major paradigm shifts highly disruptive of the ways the energy sector functions today. The EAI Transactions on Energy Web are positioned at the forefront of these efforts and provide a forum for the most forward-looking, state-of-the-art research bringing together the cross section of IT and Energy communities. The journal will publish original works reporting on prominent advances that challenge traditional thinking.