{"title":"Research on optimal scheduling of microgrid based on improved quantum particle swarm optimization algorithm","authors":"Fengyi Liu, Pan Duan","doi":"10.4108/ew.5696","DOIUrl":null,"url":null,"abstract":"INTRODUCTION: With the large-scale integration of new energy into the grid, the safety and reliability of the power grid have been severely tested. The optimized configuration of micro power systems is a key element of intelligent power systems, playing a crucial role in reducing energy consumption and environmental pollution. \nOBJECTIVES: a power grid optimization scheduling model is proposed that comprehensively considers the issues of power grid operating costs and environmental governance costs \nMETHODS: Using quantum particle swarm optimization method to optimize the objective function with the lowest system operating cost and the lowest environmental governance cost. In order to improve the search ability of the algorithm and eliminate the problem of easily getting stuck in local optima, the Levy flight strategy is introduced, and the variable weight method is used to update the particle factor to improve the optimization ability of the algorithm. \nRESULTS: The simulation results show that the improved quantum particle swarm optimization algorithm has strong optimization ability, and the scheduling model proposed in this paper can achieve good scheduling results in different scheduling tasks. \nCONCLUSION: (1)The improved particle swarm algorithm, in comparison to itspredecessor, boasts a greater degree of optimization accuracy, aswifter convergence rate, and the capability to avoid the algorithm'sdescent into the local optimal solution at a later stage of the process. (2)The proposed model can effectively reduce users’ electricity costs and environmental pollution, and promote the optimized operation of microgrids.","PeriodicalId":53458,"journal":{"name":"EAI Endorsed Transactions on Energy Web","volume":"45 14","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EAI Endorsed Transactions on Energy Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/ew.5696","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1
Abstract
INTRODUCTION: With the large-scale integration of new energy into the grid, the safety and reliability of the power grid have been severely tested. The optimized configuration of micro power systems is a key element of intelligent power systems, playing a crucial role in reducing energy consumption and environmental pollution.
OBJECTIVES: a power grid optimization scheduling model is proposed that comprehensively considers the issues of power grid operating costs and environmental governance costs
METHODS: Using quantum particle swarm optimization method to optimize the objective function with the lowest system operating cost and the lowest environmental governance cost. In order to improve the search ability of the algorithm and eliminate the problem of easily getting stuck in local optima, the Levy flight strategy is introduced, and the variable weight method is used to update the particle factor to improve the optimization ability of the algorithm.
RESULTS: The simulation results show that the improved quantum particle swarm optimization algorithm has strong optimization ability, and the scheduling model proposed in this paper can achieve good scheduling results in different scheduling tasks.
CONCLUSION: (1)The improved particle swarm algorithm, in comparison to itspredecessor, boasts a greater degree of optimization accuracy, aswifter convergence rate, and the capability to avoid the algorithm'sdescent into the local optimal solution at a later stage of the process. (2)The proposed model can effectively reduce users’ electricity costs and environmental pollution, and promote the optimized operation of microgrids.
期刊介绍:
With ICT pervading everyday objects and infrastructures, the ‘Future Internet’ is envisioned to undergo a radical transformation from how we know it today (a mere communication highway) into a vast hybrid network seamlessly integrating knowledge, people and machines into techno-social ecosystems whose behaviour transcends the boundaries of today’s engineering science. As the internet of things continues to grow, billions and trillions of data bytes need to be moved, stored and shared. The energy thus consumed and the climate impact of data centers are increasing dramatically, thereby becoming significant contributors to global warming and climate change. As reported recently, the combined electricity consumption of the world’s data centers has already exceeded that of some of the world''s top ten economies. In the ensuing process of integrating traditional and renewable energy, monitoring and managing various energy sources, and processing and transferring technological information through various channels, IT will undoubtedly play an ever-increasing and central role. Several technologies are currently racing to production to meet this challenge, from ‘smart dust’ to hybrid networks capable of controlling the emergence of dependable and reliable green and energy-efficient ecosystems – which we generically term the ‘energy web’ – calling for major paradigm shifts highly disruptive of the ways the energy sector functions today. The EAI Transactions on Energy Web are positioned at the forefront of these efforts and provide a forum for the most forward-looking, state-of-the-art research bringing together the cross section of IT and Energy communities. The journal will publish original works reporting on prominent advances that challenge traditional thinking.