Deep Reinforcement Learning-Augmented Spalart–Allmaras Turbulence Model: Application to a Turbulent Round Jet Flow

IF 1.8 Q3 MECHANICS Fluids Pub Date : 2024-04-09 DOI:10.3390/fluids9040088
Lukas M. Fuchs, Jakob G. R. von Saldern, T. Kaiser, K. Oberleithner
{"title":"Deep Reinforcement Learning-Augmented Spalart–Allmaras Turbulence Model: Application to a Turbulent Round Jet Flow","authors":"Lukas M. Fuchs, Jakob G. R. von Saldern, T. Kaiser, K. Oberleithner","doi":"10.3390/fluids9040088","DOIUrl":null,"url":null,"abstract":"The purpose of this work is to explore the potential of deep reinforcement learning (DRL) as a black-box optimizer for turbulence model identification. For this, we consider a Reynolds-averaged Navier–Stokes (RANS) closure model of a round turbulent jet flow at a Reynolds number of 10,000. For this purpose, we augment the widely utilized Spalart–Allmaras turbulence model by introducing a source term that is identified by DRL. The algorithm is trained to maximize the alignment of the augmented RANS model velocity fields and time-averaged large eddy simulation (LES) reference data. It is shown that the alignment between the reference data and the results of the RANS simulation is improved by 48% using the Spalart–Allmaras model augmented with DRL compared to the standard model. The velocity field, jet spreading rate, and axial velocity decay exhibit substantially improved agreement with both the LES reference and literature data. In addition, we applied the trained model to a jet flow with a Reynolds number of 15,000, which improved the mean field alignment by 35%, demonstrating that the framework is applicable to unseen data of the same configuration at a higher Reynolds number. Overall, this work demonstrates that DRL is a promising method for RANS closure model identification. Hurdles and challenges associated with the presented methodology, such as high numerical cost, numerical stability, and sensitivity of hyperparameters are discussed in the study.","PeriodicalId":12397,"journal":{"name":"Fluids","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fluids9040088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this work is to explore the potential of deep reinforcement learning (DRL) as a black-box optimizer for turbulence model identification. For this, we consider a Reynolds-averaged Navier–Stokes (RANS) closure model of a round turbulent jet flow at a Reynolds number of 10,000. For this purpose, we augment the widely utilized Spalart–Allmaras turbulence model by introducing a source term that is identified by DRL. The algorithm is trained to maximize the alignment of the augmented RANS model velocity fields and time-averaged large eddy simulation (LES) reference data. It is shown that the alignment between the reference data and the results of the RANS simulation is improved by 48% using the Spalart–Allmaras model augmented with DRL compared to the standard model. The velocity field, jet spreading rate, and axial velocity decay exhibit substantially improved agreement with both the LES reference and literature data. In addition, we applied the trained model to a jet flow with a Reynolds number of 15,000, which improved the mean field alignment by 35%, demonstrating that the framework is applicable to unseen data of the same configuration at a higher Reynolds number. Overall, this work demonstrates that DRL is a promising method for RANS closure model identification. Hurdles and challenges associated with the presented methodology, such as high numerical cost, numerical stability, and sensitivity of hyperparameters are discussed in the study.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
深度强化学习增强的 Spalart-Allmaras 湍流模型:湍流圆形射流的应用
本研究旨在探索深度强化学习(DRL)作为湍流模型识别黑盒优化器的潜力。为此,我们考虑了雷诺数为 10,000 的圆形湍流喷射流的雷诺平均纳维-斯托克斯(RANS)闭合模型。为此,我们在广泛使用的 Spalart-Allmaras 湍流模型中引入了一个源项,该源项由 DRL 识别。对算法进行了训练,以最大限度地提高增强 RANS 模型速度场与时间平均大涡模拟(LES)参考数据的一致性。结果表明,使用 DRL 增强的 Spalart-Allmaras 模型与标准模型相比,参考数据与 RANS 模拟结果之间的一致性提高了 48%。速度场、射流扩散率和轴向速度衰减与 LES 参考数据和文献数据的一致性都有大幅提高。此外,我们还将训练有素的模型应用于雷诺数为 15,000 的喷射流,其平均场对齐度提高了 35%,这表明该框架适用于雷诺数更高的相同构造的未见数据。总之,这项工作证明 DRL 是一种很有前途的 RANS 闭合模型识别方法。研究还讨论了与所提出的方法相关的障碍和挑战,如高数值成本、数值稳定性和超参数的敏感性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Fluids
Fluids Engineering-Mechanical Engineering
CiteScore
3.40
自引率
10.50%
发文量
326
审稿时长
12 weeks
期刊最新文献
Interrupter Technique Revisited: Building an Experimental Mechanical Ventilator to Assess Respiratory Mechanics in Large Animals Three-Dimensional Long-Wave Instability of an Evaporation/Condensation Film Valveless Pumping with an Unsteady Stenosis in an Open Tank Configuration Analytical Solution for Transient Electroosmotic and Pressure-Driven Flows in Microtubes Stochastic Equations of Hydrodynamic Theory of Plasma
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1