Stochastic Equations of Hydrodynamic Theory of Plasma

IF 1.8 Q3 MECHANICS Fluids Pub Date : 2024-06-07 DOI:10.3390/fluids9060139
Artur V. Dmitrenko
{"title":"Stochastic Equations of Hydrodynamic Theory of Plasma","authors":"Artur V. Dmitrenko","doi":"10.3390/fluids9060139","DOIUrl":null,"url":null,"abstract":"Stochastic equations of the hydrodynamic theory of plasma are presented in relation to strong external fields. It is shown that the use of these stochastic equations makes it possible to obtain new theoretical solutions for plasma as a result of its heating in a strong external electric field. Theoretical solutions for the conductivity of turbulent plasma when heated in an external electric field of 100 V/cm are considered. Calculated values for the electron drift velocity, electron mobility, electron collision frequency, and the Coulomb logarithm in the region of strong electric fields are obtained. Here we consider experiments on turbulent heating of hydrogen plasma in the range of electric field strength of 100 < E < 1000. The calculated dependences of plasma conductivity are in satisfactory agreement with experimental data for heating plasma in a strong electric field. It is shown that the plasma turbulence in the region of strong electric fields E ~1000 V/cm is close to 100%. For the first time, it is confirmed that the derived dependences for collision frequency, drift velocity, and other values include the degree of turbulence of plasma, which makes it possible to correctly describe experimental data for heating plasma even with strong electric fields. In addition, it was determined that the scatter of experimental data may be associated with the variability of the function in the expression for the heat flux density. For the first time, it is shown theoretically that the experimentally determined fact of the possibility of the existence of an approximate constancy of plasma conductivity in the region E = 100–1000 V/cm can occur with an error of ~30%. The results show significant advantages of the stochastic hydrodynamic plasma theory over other methods that are not yet able to satisfactorily as well as qualitatively and quantitatively predict long-known experimental data while taking into account the degree of turbulence.","PeriodicalId":12397,"journal":{"name":"Fluids","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fluids9060139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Stochastic equations of the hydrodynamic theory of plasma are presented in relation to strong external fields. It is shown that the use of these stochastic equations makes it possible to obtain new theoretical solutions for plasma as a result of its heating in a strong external electric field. Theoretical solutions for the conductivity of turbulent plasma when heated in an external electric field of 100 V/cm are considered. Calculated values for the electron drift velocity, electron mobility, electron collision frequency, and the Coulomb logarithm in the region of strong electric fields are obtained. Here we consider experiments on turbulent heating of hydrogen plasma in the range of electric field strength of 100 < E < 1000. The calculated dependences of plasma conductivity are in satisfactory agreement with experimental data for heating plasma in a strong electric field. It is shown that the plasma turbulence in the region of strong electric fields E ~1000 V/cm is close to 100%. For the first time, it is confirmed that the derived dependences for collision frequency, drift velocity, and other values include the degree of turbulence of plasma, which makes it possible to correctly describe experimental data for heating plasma even with strong electric fields. In addition, it was determined that the scatter of experimental data may be associated with the variability of the function in the expression for the heat flux density. For the first time, it is shown theoretically that the experimentally determined fact of the possibility of the existence of an approximate constancy of plasma conductivity in the region E = 100–1000 V/cm can occur with an error of ~30%. The results show significant advantages of the stochastic hydrodynamic plasma theory over other methods that are not yet able to satisfactorily as well as qualitatively and quantitatively predict long-known experimental data while taking into account the degree of turbulence.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
等离子体流体力学理论的随机方程
介绍了等离子体流体力学理论中与强外电场有关的随机方程。结果表明,使用这些随机方程可以获得等离子体在强外电场中加热时的新理论解。研究考虑了湍流等离子体在 100 V/cm 的外电场中加热时的电导率理论解。得出了强电场区域内电子漂移速度、电子迁移率、电子碰撞频率和库仑对数的计算值。在此,我们考虑了在 100 < E < 1000 的电场强度范围内氢等离子体的湍流加热实验。等离子体电导率的计算值与在强电场中加热等离子体的实验数据完全一致。研究表明,在强电场 E ~1000 V/cm 区域,等离子体湍流接近 100%。首次证实推导出的碰撞频率、漂移速度和其他值的依赖关系包括等离子体的湍流程度,这使得正确描述在强电场下加热等离子体的实验数据成为可能。此外,还确定了实验数据的分散可能与热通量密度表达式中函数的变化有关。研究首次从理论上证明了实验所确定的事实,即在 E = 100-1000 V/cm 区域等离子体电导率可能存在近似常数,误差约为 30%。结果表明,随机流体动力等离子体理论与其他方法相比具有显著优势,其他方法还无法在考虑湍流程度的同时,令人满意地定性和定量预测已知的长期实验数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Fluids
Fluids Engineering-Mechanical Engineering
CiteScore
3.40
自引率
10.50%
发文量
326
审稿时长
12 weeks
期刊最新文献
Interrupter Technique Revisited: Building an Experimental Mechanical Ventilator to Assess Respiratory Mechanics in Large Animals Three-Dimensional Long-Wave Instability of an Evaporation/Condensation Film Valveless Pumping with an Unsteady Stenosis in an Open Tank Configuration Analytical Solution for Transient Electroosmotic and Pressure-Driven Flows in Microtubes Stochastic Equations of Hydrodynamic Theory of Plasma
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1