{"title":"Embedded Highway Health Maintenance System Based on Digital Twin Superposition Model","authors":"Bijun Lei, Rui Li, Rong Huang","doi":"10.4108/ew.5654","DOIUrl":null,"url":null,"abstract":"INTRODUCTION: The highway monitoring data acquisition technology develops quickly. Based on the traditional form of continuous monitoring, intelligent management system focuses on digital and wireless transmission. In the operation of highway maintenance system, each system is independent of each other, lacking of effective connection. Moreover, the level of continuous monitoring is obviously backward, which restricts the development of highway health monitoring. It is necessary to further study the level of integration to achieve the real-time tracking and the monitoring of highway’s healthy development. \nOBJECTIVES: This paper presents a highway health maintenance system based on digital twin technology, which intends to provide a solution for efficient, stable and automatic data transmission of the highway operation and maintenance management. \nMETHODS: The output of the algorithm after the noise reduction effect is compared with the data containing the generated noise. The average number of nodes is set before running the algorithm to determine the actual length of the vertical position of the embedded sensor (calculating the position of two sensor nodes). The vertical length can be referred to the combined noise level formed and the combined test to determine the position. With the help of the overall data, it can be seen that the Kalman low-pass filtering algorithm can well describe the trend of the received signal and retain the key information in the received signal. \nRESULTS: It proves that the algorithm in this paper has fast calculation speed and high efficiency, and the basic working principle is simple. Thus, it is a good data denoising solution. \nCONCLUSION: The output in the paper ensures the data exchange and the update of the whole life cycle of highway, defines the digital twin entity model, and provides a reference for the establishment of information and data network.","PeriodicalId":53458,"journal":{"name":"EAI Endorsed Transactions on Energy Web","volume":"7 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EAI Endorsed Transactions on Energy Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/ew.5654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
INTRODUCTION: The highway monitoring data acquisition technology develops quickly. Based on the traditional form of continuous monitoring, intelligent management system focuses on digital and wireless transmission. In the operation of highway maintenance system, each system is independent of each other, lacking of effective connection. Moreover, the level of continuous monitoring is obviously backward, which restricts the development of highway health monitoring. It is necessary to further study the level of integration to achieve the real-time tracking and the monitoring of highway’s healthy development.
OBJECTIVES: This paper presents a highway health maintenance system based on digital twin technology, which intends to provide a solution for efficient, stable and automatic data transmission of the highway operation and maintenance management.
METHODS: The output of the algorithm after the noise reduction effect is compared with the data containing the generated noise. The average number of nodes is set before running the algorithm to determine the actual length of the vertical position of the embedded sensor (calculating the position of two sensor nodes). The vertical length can be referred to the combined noise level formed and the combined test to determine the position. With the help of the overall data, it can be seen that the Kalman low-pass filtering algorithm can well describe the trend of the received signal and retain the key information in the received signal.
RESULTS: It proves that the algorithm in this paper has fast calculation speed and high efficiency, and the basic working principle is simple. Thus, it is a good data denoising solution.
CONCLUSION: The output in the paper ensures the data exchange and the update of the whole life cycle of highway, defines the digital twin entity model, and provides a reference for the establishment of information and data network.
期刊介绍:
With ICT pervading everyday objects and infrastructures, the ‘Future Internet’ is envisioned to undergo a radical transformation from how we know it today (a mere communication highway) into a vast hybrid network seamlessly integrating knowledge, people and machines into techno-social ecosystems whose behaviour transcends the boundaries of today’s engineering science. As the internet of things continues to grow, billions and trillions of data bytes need to be moved, stored and shared. The energy thus consumed and the climate impact of data centers are increasing dramatically, thereby becoming significant contributors to global warming and climate change. As reported recently, the combined electricity consumption of the world’s data centers has already exceeded that of some of the world''s top ten economies. In the ensuing process of integrating traditional and renewable energy, monitoring and managing various energy sources, and processing and transferring technological information through various channels, IT will undoubtedly play an ever-increasing and central role. Several technologies are currently racing to production to meet this challenge, from ‘smart dust’ to hybrid networks capable of controlling the emergence of dependable and reliable green and energy-efficient ecosystems – which we generically term the ‘energy web’ – calling for major paradigm shifts highly disruptive of the ways the energy sector functions today. The EAI Transactions on Energy Web are positioned at the forefront of these efforts and provide a forum for the most forward-looking, state-of-the-art research bringing together the cross section of IT and Energy communities. The journal will publish original works reporting on prominent advances that challenge traditional thinking.