{"title":"Research on Predictive Control Energy Management Strategy for Composite Electric Ship Based on Power Forecasting","authors":"Haotian Chen, Xixia Huang","doi":"10.4108/ew.4653","DOIUrl":null,"url":null,"abstract":"A proposed solution is presented to address the issue of rising energy loss resulting from inaccurate power prediction in the predictive energy management strategy for composite electric power electric ship. The solution involves the development of a power prediction model that integrates Archimedes' algorithm, optimized variational modal decomposition, and BiLSTM. Within the framework of Model Predictive Control, this predictive model is utilized for power forecasting, transforming the global optimization problem into one of optimizing the power output distribution among power sources within the predictive time domain, then the optimization objective is to minimize the energy loss of the composite electric power system, and a dynamic programming algorithm is employed to solve the optimization problem within the forecast time domain. The simulation findings demonstrate a significant enhancement in the forecast accuracy of the power prediction model introduced in this study, with a 52.61% improvement compared to the AOA-BiLSTM power prediction model. Concurrently, the energy management strategy utilizing the prediction model proposed in this research shows a 1.02% reduction in energy loss compared to the prediction model control strategy based on AOA-BiLSTM, and a 15.8% reduction in energy loss compared to the ruler-based strategy.","PeriodicalId":53458,"journal":{"name":"EAI Endorsed Transactions on Energy Web","volume":"99 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EAI Endorsed Transactions on Energy Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/ew.4653","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
A proposed solution is presented to address the issue of rising energy loss resulting from inaccurate power prediction in the predictive energy management strategy for composite electric power electric ship. The solution involves the development of a power prediction model that integrates Archimedes' algorithm, optimized variational modal decomposition, and BiLSTM. Within the framework of Model Predictive Control, this predictive model is utilized for power forecasting, transforming the global optimization problem into one of optimizing the power output distribution among power sources within the predictive time domain, then the optimization objective is to minimize the energy loss of the composite electric power system, and a dynamic programming algorithm is employed to solve the optimization problem within the forecast time domain. The simulation findings demonstrate a significant enhancement in the forecast accuracy of the power prediction model introduced in this study, with a 52.61% improvement compared to the AOA-BiLSTM power prediction model. Concurrently, the energy management strategy utilizing the prediction model proposed in this research shows a 1.02% reduction in energy loss compared to the prediction model control strategy based on AOA-BiLSTM, and a 15.8% reduction in energy loss compared to the ruler-based strategy.
期刊介绍:
With ICT pervading everyday objects and infrastructures, the ‘Future Internet’ is envisioned to undergo a radical transformation from how we know it today (a mere communication highway) into a vast hybrid network seamlessly integrating knowledge, people and machines into techno-social ecosystems whose behaviour transcends the boundaries of today’s engineering science. As the internet of things continues to grow, billions and trillions of data bytes need to be moved, stored and shared. The energy thus consumed and the climate impact of data centers are increasing dramatically, thereby becoming significant contributors to global warming and climate change. As reported recently, the combined electricity consumption of the world’s data centers has already exceeded that of some of the world''s top ten economies. In the ensuing process of integrating traditional and renewable energy, monitoring and managing various energy sources, and processing and transferring technological information through various channels, IT will undoubtedly play an ever-increasing and central role. Several technologies are currently racing to production to meet this challenge, from ‘smart dust’ to hybrid networks capable of controlling the emergence of dependable and reliable green and energy-efficient ecosystems – which we generically term the ‘energy web’ – calling for major paradigm shifts highly disruptive of the ways the energy sector functions today. The EAI Transactions on Energy Web are positioned at the forefront of these efforts and provide a forum for the most forward-looking, state-of-the-art research bringing together the cross section of IT and Energy communities. The journal will publish original works reporting on prominent advances that challenge traditional thinking.