Generating Synthetic Sperm Whale Voice Data Using StyleGAN2-ADA

E. Kopets, Tatiana Shpilevaya, Oleg Vasilchenko, Artur Karimov, D. Butusov
{"title":"Generating Synthetic Sperm Whale Voice Data Using StyleGAN2-ADA","authors":"E. Kopets, Tatiana Shpilevaya, Oleg Vasilchenko, Artur Karimov, D. Butusov","doi":"10.3390/bdcc8040040","DOIUrl":null,"url":null,"abstract":"The application of deep learning neural networks enables the processing of extensive volumes of data and often requires dense datasets. In certain domains, researchers encounter challenges related to the scarcity of training data, particularly in marine biology. In addition, many sounds produced by sea mammals are of interest in technical applications, e.g., underwater communication or sonar construction. Thus, generating synthetic biological sounds is an important task for understanding and studying the behavior of various animal species, especially large sea mammals, which demonstrate complex social behavior and can use hydrolocation to navigate underwater. This study is devoted to generating sperm whale vocalizations using a limited sperm whale click dataset. Our approach utilizes an augmentation technique predicated on the transformation of audio sample spectrograms, followed by the employment of the generative adversarial network StyleGAN2-ADA to generate new audio data. The results show that using the chosen augmentation method, namely mixing along the time axis, makes it possible to create fairly similar clicks of sperm whales with a maximum deviation of 2%. The generation of new clicks was reproduced on datasets using selected augmentation approaches with two neural networks: StyleGAN2-ADA and WaveGan. StyleGAN2-ADA, trained on an augmented dataset using the axis mixing approach, showed better results compared to WaveGAN.","PeriodicalId":505155,"journal":{"name":"Big Data and Cognitive Computing","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data and Cognitive Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/bdcc8040040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The application of deep learning neural networks enables the processing of extensive volumes of data and often requires dense datasets. In certain domains, researchers encounter challenges related to the scarcity of training data, particularly in marine biology. In addition, many sounds produced by sea mammals are of interest in technical applications, e.g., underwater communication or sonar construction. Thus, generating synthetic biological sounds is an important task for understanding and studying the behavior of various animal species, especially large sea mammals, which demonstrate complex social behavior and can use hydrolocation to navigate underwater. This study is devoted to generating sperm whale vocalizations using a limited sperm whale click dataset. Our approach utilizes an augmentation technique predicated on the transformation of audio sample spectrograms, followed by the employment of the generative adversarial network StyleGAN2-ADA to generate new audio data. The results show that using the chosen augmentation method, namely mixing along the time axis, makes it possible to create fairly similar clicks of sperm whales with a maximum deviation of 2%. The generation of new clicks was reproduced on datasets using selected augmentation approaches with two neural networks: StyleGAN2-ADA and WaveGan. StyleGAN2-ADA, trained on an augmented dataset using the axis mixing approach, showed better results compared to WaveGAN.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用 StyleGAN2-ADA 生成合成抹香鲸声音数据
应用深度学习神经网络可以处理大量数据,通常需要密集的数据集。在某些领域,研究人员会遇到与训练数据稀缺有关的挑战,尤其是在海洋生物学领域。此外,海洋哺乳动物发出的许多声音在技术应用中也很有意义,例如水下通信或声纳制造。因此,生成合成生物声音是了解和研究各种动物行为的一项重要任务,尤其是大型海洋哺乳动物,它们表现出复杂的社会行为,并能利用水定位在水下导航。本研究致力于利用有限的抹香鲸点击数据集生成抹香鲸的发声。我们的方法利用了一种基于音频样本频谱图转换的增强技术,然后利用生成式对抗网络 StyleGAN2-ADA 生成新的音频数据。结果表明,使用所选的增强方法(即沿时间轴混合),可以生成相当相似的抹香鲸点击声,最大偏差为 2%。在使用两种神经网络的选定增强方法的数据集上重现了新点击音的生成:StyleGAN2-ADA 和 WaveGan。与 WaveGAN 相比,StyleGAN2-ADA 在使用轴混合方法对增强数据集进行训练后,显示出更好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Breast Cancer Detection and Localizing the Mass Area Using Deep Learning Trends and Challenges Towards Effective Data-Driven Decision Making in UK Small and Medium-Sized Enterprises: Case Studies and Lessons Learnt from the Analysis of 85 Small and Medium-Sized Enterprises Demystifying Mental Health by Decoding Facial Action Unit Sequences AMIKOMNET: Novel Structure for a Deep Learning Model to Enhance COVID-19 Classification Task Performance The State of the Art of Artificial Intelligence Applications in Eosinophilic Esophagitis: A Systematic Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1