{"title":"AMIKOMNET: Novel Structure for a Deep Learning Model to Enhance COVID-19 Classification Task Performance","authors":"Muh Hanafi","doi":"10.3390/bdcc8070077","DOIUrl":null,"url":null,"abstract":"Since early 2020, coronavirus has spread extensively throughout the globe. It was first detected in Wuhan, a province in China. Many researchers have proposed various models to solve problems related to COVID-19 detection. As traditional medical approaches take a lot of time to detect the virus and require specific laboratory tests, the adoption of artificial intelligence (AI), including machine learning, might play an important role in handling the problem. A great deal of research has seen the adoption of AI succeed in the early detection of COVID-19 using X-ray images. Unfortunately, the majority of deep learning adoption for COVID-19 detection has the shortcomings of high error detection and high computation costs. In this study, we employed a hybrid model using an auto-encoder (AE) and a convolutional neural network (CNN) (named AMIKOMNET) with a small number of layers and parameters. We implemented an ensemble learning mechanism in the AMIKOMNET model using Adaboost with the aim of reducing error detection in COVID-19 classification tasks. The experimental results for the binary class show that our model achieved high effectiveness, with 96.90% accuracy, 95.06% recall, 94.67% F1-score, and 96.03% precision. The experimental result for the multiclass achieved 95.13% accuracy, 94.93% recall, 95.75% F1-score, and 96.19% precision. The adoption of Adaboost in AMIKOMNET for the binary class increased the effectiveness of the model to 98.45% accuracy, 96.16% recall, 95.70% F1-score, and 96.87% precision. The adoption of Adaboost in AMIKOMNET in the multiclass classification task also saw an increase in performance, with an accuracy of 96.65%, a recall of 94.93%, an F1-score of 95.76%, and a precision of 96.19%. The implementation of AE to handle image feature extraction combined with a CNN used to handle dimensional image feature reduction achieved outstanding performance when compared to previous work using a deep learning platform. Exploiting Adaboost also increased the effectiveness of the AMIKOMNET model in detecting COVID-19.","PeriodicalId":505155,"journal":{"name":"Big Data and Cognitive Computing","volume":"1 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data and Cognitive Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/bdcc8070077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Since early 2020, coronavirus has spread extensively throughout the globe. It was first detected in Wuhan, a province in China. Many researchers have proposed various models to solve problems related to COVID-19 detection. As traditional medical approaches take a lot of time to detect the virus and require specific laboratory tests, the adoption of artificial intelligence (AI), including machine learning, might play an important role in handling the problem. A great deal of research has seen the adoption of AI succeed in the early detection of COVID-19 using X-ray images. Unfortunately, the majority of deep learning adoption for COVID-19 detection has the shortcomings of high error detection and high computation costs. In this study, we employed a hybrid model using an auto-encoder (AE) and a convolutional neural network (CNN) (named AMIKOMNET) with a small number of layers and parameters. We implemented an ensemble learning mechanism in the AMIKOMNET model using Adaboost with the aim of reducing error detection in COVID-19 classification tasks. The experimental results for the binary class show that our model achieved high effectiveness, with 96.90% accuracy, 95.06% recall, 94.67% F1-score, and 96.03% precision. The experimental result for the multiclass achieved 95.13% accuracy, 94.93% recall, 95.75% F1-score, and 96.19% precision. The adoption of Adaboost in AMIKOMNET for the binary class increased the effectiveness of the model to 98.45% accuracy, 96.16% recall, 95.70% F1-score, and 96.87% precision. The adoption of Adaboost in AMIKOMNET in the multiclass classification task also saw an increase in performance, with an accuracy of 96.65%, a recall of 94.93%, an F1-score of 95.76%, and a precision of 96.19%. The implementation of AE to handle image feature extraction combined with a CNN used to handle dimensional image feature reduction achieved outstanding performance when compared to previous work using a deep learning platform. Exploiting Adaboost also increased the effectiveness of the AMIKOMNET model in detecting COVID-19.