{"title":"From Generation to Reuse: A Circular Economy Strategy Applied to Wind Turbine Production","authors":"Ana Rita Caramelo, P. Santos, Tânia M. Lima","doi":"10.3390/designs8020032","DOIUrl":null,"url":null,"abstract":"The environmental impact of wind turbine rotor blades, both during manufacturing and at the end of their life cycle, can be significant. The aim of this study was to define and test a methodology for recycling the waste resulting from their production. Particles of waste from the mechanical machining of rotor blades, which were made up of a glass fibre/epoxy matrix mixture, were used to produce toe caps for use by the footwear industry. The addition of 1 wt.% of particles improved the mechanical properties of the epoxy matrix, with a 5.50% improvement in tension and an 8% improvement in stiffness. Characterisation of the laminates, manufactured by hand lay-up technique, revealed that in the three-point bending tests, the additive laminates showed improvements of 18.60% in tension, 7.50% in stiffness, and 10% in deformation compared to the control laminate. The compression test showed that the additive glass fibre toe cap had greater resistance to compression than the control glass fibre toe cap, with a reduction in deformation of 23.10%. The toe caps are suitable for use in protective footwear according to European standard EN ISO 20346:2022. They guaranteed protection against low-velocity impacts at an energy level of at least 100 J and against compression when tested at a compression load of at least 10 kN.","PeriodicalId":504821,"journal":{"name":"Designs","volume":"765 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Designs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/designs8020032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The environmental impact of wind turbine rotor blades, both during manufacturing and at the end of their life cycle, can be significant. The aim of this study was to define and test a methodology for recycling the waste resulting from their production. Particles of waste from the mechanical machining of rotor blades, which were made up of a glass fibre/epoxy matrix mixture, were used to produce toe caps for use by the footwear industry. The addition of 1 wt.% of particles improved the mechanical properties of the epoxy matrix, with a 5.50% improvement in tension and an 8% improvement in stiffness. Characterisation of the laminates, manufactured by hand lay-up technique, revealed that in the three-point bending tests, the additive laminates showed improvements of 18.60% in tension, 7.50% in stiffness, and 10% in deformation compared to the control laminate. The compression test showed that the additive glass fibre toe cap had greater resistance to compression than the control glass fibre toe cap, with a reduction in deformation of 23.10%. The toe caps are suitable for use in protective footwear according to European standard EN ISO 20346:2022. They guaranteed protection against low-velocity impacts at an energy level of at least 100 J and against compression when tested at a compression load of at least 10 kN.