Design of an Innovative Twin-Disc Device for the Evaluation of Wheel and Rail Profile Wear

Designs Pub Date : 2024-07-26 DOI:10.3390/designs8040073
M. Magelli, Rosario Pagano, Nicolò Zampieri
{"title":"Design of an Innovative Twin-Disc Device for the Evaluation of Wheel and Rail Profile Wear","authors":"M. Magelli, Rosario Pagano, Nicolò Zampieri","doi":"10.3390/designs8040073","DOIUrl":null,"url":null,"abstract":"The tribological properties of steels used to realise railway wheels play a fundamental role in the performances of both vehicle and infrastructure. In particular, the wear process, caused by the wheel–rail interaction, modifies the shape of wheel and rail profiles, changing the performances of the vehicle. For this reason, research institutes and vehicle manufacturers have worked hard to develop predictive tools able to estimate the evolution of the wheel and rail profiles. The efficiency of these tools is strongly influenced by the tribological properties of the materials, i.e., the wear coefficients, which are used as input data. The characterisation of these properties requires specific tools and long-lasting experimental campaigns, which are usually performed under controlled operating conditions, using twin-disc test benches. These devices usually do not consider the real contact conditions in terms of normal load, contact geometry, and slip velocity, since they are equipped with small-size rollers. The paper proposes an innovative 1:5 scaled twin-disc, which allows the reproduction of the real wheel–rail contact conditions, thanks to Pascal’s scaling technique. The testing device allows the reproduction of a wide range of typical operating conditions of railway vehicles, thanks to high-power independent brushless motors, used to actuate the rollers, and an innovative loading system.","PeriodicalId":504821,"journal":{"name":"Designs","volume":"46 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Designs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/designs8040073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The tribological properties of steels used to realise railway wheels play a fundamental role in the performances of both vehicle and infrastructure. In particular, the wear process, caused by the wheel–rail interaction, modifies the shape of wheel and rail profiles, changing the performances of the vehicle. For this reason, research institutes and vehicle manufacturers have worked hard to develop predictive tools able to estimate the evolution of the wheel and rail profiles. The efficiency of these tools is strongly influenced by the tribological properties of the materials, i.e., the wear coefficients, which are used as input data. The characterisation of these properties requires specific tools and long-lasting experimental campaigns, which are usually performed under controlled operating conditions, using twin-disc test benches. These devices usually do not consider the real contact conditions in terms of normal load, contact geometry, and slip velocity, since they are equipped with small-size rollers. The paper proposes an innovative 1:5 scaled twin-disc, which allows the reproduction of the real wheel–rail contact conditions, thanks to Pascal’s scaling technique. The testing device allows the reproduction of a wide range of typical operating conditions of railway vehicles, thanks to high-power independent brushless motors, used to actuate the rollers, and an innovative loading system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
设计用于评估车轮和轨道轮廓磨损的创新型双盘装置
用于制造铁路车轮的钢材的摩擦学特性对车辆和基础设施的性能起着至关重要的作用。特别是由轮轨相互作用引起的磨损过程会改变车轮和轨道的轮廓形状,从而改变车辆的性能。因此,研究机构和车辆制造商一直在努力开发能够估计车轮和轨道轮廓演变的预测工具。这些工具的效率在很大程度上受到材料摩擦学特性(即磨损系数)的影响。这些特性的表征需要特定的工具和长期的实验活动,通常是在受控运行条件下使用双盘试验台进行的。这些设备通常不考虑正常载荷、接触几何形状和滑移速度等实际接触条件,因为它们配备的是小尺寸辊筒。本文提出了一种创新的 1:5 缩放双圆盘,利用帕斯卡缩放技术,可以再现真实的轮轨接触条件。由于采用了用于驱动滚轮的大功率独立无刷电机和创新的加载系统,该测试装置可以再现铁路车辆的各种典型运行条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design of an Innovative Twin-Disc Device for the Evaluation of Wheel and Rail Profile Wear An Approach for Predicting the Lifetime of Lead-Free Soldered Electronic Components: Hitachi Rail STS Case Study Optimized Floating Offshore Wind Turbine Substructure Design Trends for 10–30 MW Turbines in Low-, Medium-, and High-Severity Wave Environments Product Design Trends within the Footwear Industry: A Review Analysis of the Accuracy of CAD Modeling in Engineering and Medical Industries Based on Measurement Data Using Reverse Engineering Methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1