Integrating convolutional neural networks for improved software engineering: A Collaborative and unbalanced data Perspective

Mohammadreza Nehzati
{"title":"Integrating convolutional neural networks for improved software engineering: A Collaborative and unbalanced data Perspective","authors":"Mohammadreza Nehzati","doi":"10.1016/j.memori.2024.100106","DOIUrl":null,"url":null,"abstract":"<div><p>This study pioneers the tailored application of Convolutional Neural Networks (CNNs) for addressing the challenge of unbalanced data in software engineering, a relatively unexplored domain for CNN utilization. Unlike conventional methods, our framework demonstrates a significant precision uplift of up to 15% in software classification tasks, specifically enhancing minority class sample accuracy. This research not only delineates a novel CNN-based approach that outperforms traditional data balancing techniques but also underscores the strategic integration of AI to bolster software engineering processes. By pinpointing the ethical implications, our findings advocate for a conscientious adoption of AI, ensuring software development advances equitably and efficiently.</p></div>","PeriodicalId":100915,"journal":{"name":"Memories - Materials, Devices, Circuits and Systems","volume":"8 ","pages":"Article 100106"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773064624000082/pdfft?md5=42835d178c5411492a9767c94338cbaa&pid=1-s2.0-S2773064624000082-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Memories - Materials, Devices, Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773064624000082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study pioneers the tailored application of Convolutional Neural Networks (CNNs) for addressing the challenge of unbalanced data in software engineering, a relatively unexplored domain for CNN utilization. Unlike conventional methods, our framework demonstrates a significant precision uplift of up to 15% in software classification tasks, specifically enhancing minority class sample accuracy. This research not only delineates a novel CNN-based approach that outperforms traditional data balancing techniques but also underscores the strategic integration of AI to bolster software engineering processes. By pinpointing the ethical implications, our findings advocate for a conscientious adoption of AI, ensuring software development advances equitably and efficiently.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
整合卷积神经网络以改进软件工程:协作和非平衡数据视角
这项研究开创了卷积神经网络(CNN)的定制应用,以应对软件工程中不平衡数据带来的挑战,这是 CNN 应用领域中一个相对尚未开发的领域。与传统方法不同,我们的框架在软件分类任务中展示了高达 15% 的显著精度提升,特别是提高了少数类别样本的精度。这项研究不仅描述了一种基于 CNN 的新方法,其性能优于传统的数据平衡技术,而且还强调了将人工智能战略性地整合到软件工程流程中的重要性。我们的研究结果指出了人工智能的伦理意义,倡导认真采用人工智能,确保软件开发公平、高效地向前发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Energy-efficient non-volatile latch using SOT-MTJ for enhanced logic and memory applications Performance investigation of 1T1R memory cell using GAA MBC-FET technology Simplifying activations with linear approximations in neural networks Physical Unclonable Function (PUF) device based on single stage voltage amplifiers for secure signature generation in the Internet of Things Multi armed bandit based resource allocation in Near Memory Processing architectures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1