Development of an analog topology for a multi-layer neuronal network

Luã da Porciuncula Estrela , Marlon Soares Sigales , Elmer A. Gamboa Peñaloza , Marcelo Lemos Rossi , Mateus Beck Fonseca
{"title":"Development of an analog topology for a multi-layer neuronal network","authors":"Luã da Porciuncula Estrela ,&nbsp;Marlon Soares Sigales ,&nbsp;Elmer A. Gamboa Peñaloza ,&nbsp;Marcelo Lemos Rossi ,&nbsp;Mateus Beck Fonseca","doi":"10.1016/j.memori.2025.100125","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a novel approach to implementing artificial neural networks (ANNs) using analog circuits with counter circuits for storing and updating the weights and biases. The counter circuits, which are sequential logic circuits, provide a more precise and stable method for storing and updating the network parameters, compared to memristors. The paper also discusses the design of a multiplier circuit and a hyperbolic function activation circuit used in the neural network. The neural network model based on the XNOR logic function was simulated using a simulation program with integrated circuit emphasis (SPICE), demonstrating its learning capability as the error decreased for each epoch of training. The proposed methodology offers significant advantages for neuromorphic computing, especially in the domain of Internet of Things (IoT), where near-sensor data analysis and edge computation are essential.</div></div>","PeriodicalId":100915,"journal":{"name":"Memories - Materials, Devices, Circuits and Systems","volume":"9 ","pages":"Article 100125"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Memories - Materials, Devices, Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773064625000052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a novel approach to implementing artificial neural networks (ANNs) using analog circuits with counter circuits for storing and updating the weights and biases. The counter circuits, which are sequential logic circuits, provide a more precise and stable method for storing and updating the network parameters, compared to memristors. The paper also discusses the design of a multiplier circuit and a hyperbolic function activation circuit used in the neural network. The neural network model based on the XNOR logic function was simulated using a simulation program with integrated circuit emphasis (SPICE), demonstrating its learning capability as the error decreased for each epoch of training. The proposed methodology offers significant advantages for neuromorphic computing, especially in the domain of Internet of Things (IoT), where near-sensor data analysis and edge computation are essential.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of an analog topology for a multi-layer neuronal network A graphene-based toxic detection approach Optimization of deep learning algorithms for large digital data processing using evolutionary neural networks The application of organic materials used in IC advanced packaging:A review Design and evaluation of clock-gating-based approximate multiplier for error-tolerant applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1