Dual-Dependency Attention Transformer for Fine-Grained Visual Classification

Shiyan Cui, Bin Hui
{"title":"Dual-Dependency Attention Transformer for Fine-Grained Visual Classification","authors":"Shiyan Cui, Bin Hui","doi":"10.3390/s24072337","DOIUrl":null,"url":null,"abstract":"Visual transformers (ViTs) are widely used in various visual tasks, such as fine-grained visual classification (FGVC). However, the self-attention mechanism, which is the core module of visual transformers, leads to quadratic computational and memory complexity. The sparse-attention and local-attention approaches currently used by most researchers are not suitable for FGVC tasks. These tasks require dense feature extraction and global dependency modeling. To address this challenge, we propose a dual-dependency attention transformer model. It decouples global token interactions into two paths. The first is a position-dependency attention pathway based on the intersection of two types of grouped attention. The second is a semantic dependency attention pathway based on dynamic central aggregation. This approach enhances the high-quality semantic modeling of discriminative cues while reducing the computational cost to linear computational complexity. In addition, we develop discriminative enhancement strategies. These strategies increase the sensitivity of high-confidence discriminative cue tracking with a knowledge-based representation approach. Experiments on three datasets, NABIRDS, CUB, and DOGS, show that the method is suitable for fine-grained image classification. It finds a balance between computational cost and performance.","PeriodicalId":221960,"journal":{"name":"Sensors (Basel, Switzerland)","volume":"569 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors (Basel, Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/s24072337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Visual transformers (ViTs) are widely used in various visual tasks, such as fine-grained visual classification (FGVC). However, the self-attention mechanism, which is the core module of visual transformers, leads to quadratic computational and memory complexity. The sparse-attention and local-attention approaches currently used by most researchers are not suitable for FGVC tasks. These tasks require dense feature extraction and global dependency modeling. To address this challenge, we propose a dual-dependency attention transformer model. It decouples global token interactions into two paths. The first is a position-dependency attention pathway based on the intersection of two types of grouped attention. The second is a semantic dependency attention pathway based on dynamic central aggregation. This approach enhances the high-quality semantic modeling of discriminative cues while reducing the computational cost to linear computational complexity. In addition, we develop discriminative enhancement strategies. These strategies increase the sensitivity of high-confidence discriminative cue tracking with a knowledge-based representation approach. Experiments on three datasets, NABIRDS, CUB, and DOGS, show that the method is suitable for fine-grained image classification. It finds a balance between computational cost and performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于细粒度视觉分类的双依赖注意变换器
视觉变换器(ViTs)被广泛应用于各种视觉任务,如细粒度视觉分类(FGVC)。然而,作为视觉变换器核心模块的自我注意机制会导致四倍的计算和内存复杂度。大多数研究人员目前使用的稀疏注意和局部注意方法并不适合 FGVC 任务。这些任务需要密集的特征提取和全局依赖性建模。为了应对这一挑战,我们提出了一种双依赖注意转换器模型。它将全局标记交互解耦为两条路径。第一种是基于两种分组注意力交叉的位置依赖注意力路径。第二种是基于动态中心聚合的语义依赖注意力路径。这种方法增强了分辨线索的高质量语义建模,同时将计算成本降至线性计算复杂度。此外,我们还开发了判别增强策略。这些策略利用基于知识的表示方法提高了高置信度辨别线索跟踪的灵敏度。在 NABIRDS、CUB 和 DOGS 三个数据集上的实验表明,该方法适用于细粒度图像分类。它在计算成本和性能之间找到了平衡点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Flexible Ammonia Gas Sensor Based on a Grafted Polyaniline Grown on a Polyethylene Terephthalate Film Investigation of Appropriate Scaling of Networks and Images for Convolutional Neural Network-Based Nerve Detection in Ultrasound-Guided Nerve Blocks EMR-HRNet: A Multi-Scale Feature Fusion Network for Landslide Segmentation from Remote Sensing Images Measuring DNI with a New Radiometer Based on an Optical Fiber and Photodiode Highly Sensitive Balloon-like Fiber Interferometer Based on Ethanol Coated for Temperature Measurement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1