EMR-HRNet: A Multi-Scale Feature Fusion Network for Landslide Segmentation from Remote Sensing Images

Yuanhang Jin, Xiaosheng Liu, Xiaobin Huang
{"title":"EMR-HRNet: A Multi-Scale Feature Fusion Network for Landslide Segmentation from Remote Sensing Images","authors":"Yuanhang Jin, Xiaosheng Liu, Xiaobin Huang","doi":"10.3390/s24113677","DOIUrl":null,"url":null,"abstract":"Landslides constitute a significant hazard to human life, safety and natural resources. Traditional landslide investigation methods demand considerable human effort and expertise. To address this issue, this study introduces an innovative landslide segmentation framework, EMR-HRNet, aimed at enhancing accuracy. Initially, a novel data augmentation technique, CenterRep, is proposed, not only augmenting the training dataset but also enabling the model to more effectively capture the intricate features of landslides. Furthermore, this paper integrates a RefConv and Multi-Dconv Head Transposed Attention (RMA) feature pyramid structure into the HRNet model, augmenting the model’s capacity for semantic recognition and expression at various levels. Last, the incorporation of the Dilated Efficient Multi-Scale Attention (DEMA) block substantially widens the model’s receptive field, bolstering its capability to discern local features. Rigorous evaluations on the Bijie dataset and the Sichuan and surrounding area dataset demonstrate that EMR-HRNet outperforms other advanced semantic segmentation models, achieving mIoU scores of 81.70% and 71.68%, respectively. Additionally, ablation studies conducted across the comprehensive dataset further corroborate the enhancements’ efficacy. The results indicate that EMR-HRNet excels in processing satellite and UAV remote sensing imagery, showcasing its significant potential in multi-source optical remote sensing for landslide segmentation.","PeriodicalId":221960,"journal":{"name":"Sensors (Basel, Switzerland)","volume":"71 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors (Basel, Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/s24113677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Landslides constitute a significant hazard to human life, safety and natural resources. Traditional landslide investigation methods demand considerable human effort and expertise. To address this issue, this study introduces an innovative landslide segmentation framework, EMR-HRNet, aimed at enhancing accuracy. Initially, a novel data augmentation technique, CenterRep, is proposed, not only augmenting the training dataset but also enabling the model to more effectively capture the intricate features of landslides. Furthermore, this paper integrates a RefConv and Multi-Dconv Head Transposed Attention (RMA) feature pyramid structure into the HRNet model, augmenting the model’s capacity for semantic recognition and expression at various levels. Last, the incorporation of the Dilated Efficient Multi-Scale Attention (DEMA) block substantially widens the model’s receptive field, bolstering its capability to discern local features. Rigorous evaluations on the Bijie dataset and the Sichuan and surrounding area dataset demonstrate that EMR-HRNet outperforms other advanced semantic segmentation models, achieving mIoU scores of 81.70% and 71.68%, respectively. Additionally, ablation studies conducted across the comprehensive dataset further corroborate the enhancements’ efficacy. The results indicate that EMR-HRNet excels in processing satellite and UAV remote sensing imagery, showcasing its significant potential in multi-source optical remote sensing for landslide segmentation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EMR-HRNet:利用遥感图像进行滑坡分段的多尺度特征融合网络
山体滑坡对人类生命、安全和自然资源构成重大危害。传统的滑坡调查方法需要大量的人力和专业知识。为解决这一问题,本研究引入了一种创新的滑坡分割框架 EMR-HRNet,旨在提高准确性。首先,本文提出了一种新颖的数据增强技术--CenterRep,它不仅能增强训练数据集,还能使模型更有效地捕捉滑坡的复杂特征。此外,本文还将 RefConv 和 Multi-Dconv Head Transposed Attention (RMA) 特征金字塔结构集成到 HRNet 模型中,增强了模型在不同层面的语义识别和表达能力。最后,稀释高效多尺度注意(DEMA)区块的加入大大拓宽了模型的感受野,增强了其辨别局部特征的能力。在毕节数据集和四川及周边地区数据集上进行的严格评估表明,EMR-HRNet 的表现优于其他先进的语义分割模型,其 mIoU 分数分别达到 81.70% 和 71.68%。此外,在综合数据集上进行的消融研究进一步证实了增强功能的功效。结果表明,EMR-HRNet 在处理卫星和无人机遥感图像方面表现出色,展示了其在多源光学遥感滑坡分割方面的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Flexible Ammonia Gas Sensor Based on a Grafted Polyaniline Grown on a Polyethylene Terephthalate Film Investigation of Appropriate Scaling of Networks and Images for Convolutional Neural Network-Based Nerve Detection in Ultrasound-Guided Nerve Blocks EMR-HRNet: A Multi-Scale Feature Fusion Network for Landslide Segmentation from Remote Sensing Images Measuring DNI with a New Radiometer Based on an Optical Fiber and Photodiode Highly Sensitive Balloon-like Fiber Interferometer Based on Ethanol Coated for Temperature Measurement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1