The Sensors Editorial Office retracts the article, “TRUST: A Novel Framework for Vehicle Trajectory Recovery from Urban-Scale Videos” [...]
传感器》编辑部撤回文章《TRUST:从城市规模视频中恢复车辆轨迹的新型框架》 [...]
{"title":"RETRACTED: Ji, W.; Chen, X. TRUST: A Novel Framework for Vehicle Trajectory Recovery from Urban-Scale Videos. Sensors 2022, 22, 9948","authors":"Wentao Ji, Xing Chen","doi":"10.3390/s24113672","DOIUrl":"https://doi.org/10.3390/s24113672","url":null,"abstract":"The Sensors Editorial Office retracts the article, “TRUST: A Novel Framework for Vehicle Trajectory Recovery from Urban-Scale Videos” [...]","PeriodicalId":221960,"journal":{"name":"Sensors (Basel, Switzerland)","volume":"42 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141395907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Salaheldeen, V. Zhukova, R. López Antón, A. Zhukov
We have prepared NiMnGa glass-coated microwires with different geometrical aspect ratios, ρ = dmetal/Dtotal (dmetal—diameter of metallic nucleus, and Dtotal—total diameter). The structure and magnetic properties are investigated in a wide range of temperatures and magnetic fields. The XRD analysis illustrates stable microstructure in the range of ρ from 0.25 to 0.60. The estimations of average grain size and crystalline phase content evidence a remarkable variation as the ρ-ratio sweeps from 0.25 to 0.60. Thus, the microwires with the lowest aspect ratio, i.e., ρ = 0.25, show the smallest average grain size and the highest crystalline phase content. This change in the microstructural properties correlates with dramatic changes in the magnetic properties. Hence, the sample with the lowest ρ-ratio exhibits an extremely high value of the coercivity, Hc, compared to the value for the sample with the largest ρ-ratio (2989 Oe and 10 Oe, respectively, i.e., almost 300 times higher). In addition, a similar trend is observed for the spontaneous exchange bias phenomena, with an exchange bias field, Hex, of 120 Oe for the sample with ρ = 0.25 compared to a Hex = 12.5 Oe for the sample with ρ = 0.60. However, the thermomagnetic curves (field-cooled—FC and field-heating—FH) show similar magnetic behavior for all the samples. Meanwhile, FC and FH curves measured at low magnetic fields show negative values for ρ = 0.25, whereas positive values are found for the other samples. The obtained results illustrate the substantial effect of the internal stresses on microstructure and magnetic properties, which leads to magnetic hardening of samples with low aspect ratio.
{"title":"Dependence of Magnetic Properties of As-Prepared Nanocrystalline Ni2MnGa Glass-Coated Microwires on the Geometrical Aspect Ratio","authors":"M. Salaheldeen, V. Zhukova, R. López Antón, A. Zhukov","doi":"10.3390/s24113692","DOIUrl":"https://doi.org/10.3390/s24113692","url":null,"abstract":"We have prepared NiMnGa glass-coated microwires with different geometrical aspect ratios, ρ = dmetal/Dtotal (dmetal—diameter of metallic nucleus, and Dtotal—total diameter). The structure and magnetic properties are investigated in a wide range of temperatures and magnetic fields. The XRD analysis illustrates stable microstructure in the range of ρ from 0.25 to 0.60. The estimations of average grain size and crystalline phase content evidence a remarkable variation as the ρ-ratio sweeps from 0.25 to 0.60. Thus, the microwires with the lowest aspect ratio, i.e., ρ = 0.25, show the smallest average grain size and the highest crystalline phase content. This change in the microstructural properties correlates with dramatic changes in the magnetic properties. Hence, the sample with the lowest ρ-ratio exhibits an extremely high value of the coercivity, Hc, compared to the value for the sample with the largest ρ-ratio (2989 Oe and 10 Oe, respectively, i.e., almost 300 times higher). In addition, a similar trend is observed for the spontaneous exchange bias phenomena, with an exchange bias field, Hex, of 120 Oe for the sample with ρ = 0.25 compared to a Hex = 12.5 Oe for the sample with ρ = 0.60. However, the thermomagnetic curves (field-cooled—FC and field-heating—FH) show similar magnetic behavior for all the samples. Meanwhile, FC and FH curves measured at low magnetic fields show negative values for ρ = 0.25, whereas positive values are found for the other samples. The obtained results illustrate the substantial effect of the internal stresses on microstructure and magnetic properties, which leads to magnetic hardening of samples with low aspect ratio.","PeriodicalId":221960,"journal":{"name":"Sensors (Basel, Switzerland)","volume":"114 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141408279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jaume Segura-García, Sean Sturley, M. Arevalillo-Herráez, J. Alcaraz-Calero, Santiago Felici-Castell, Enrique A. Navarro-Camba
Identification of different species of animals has become an important issue in biology and ecology. Ornithology has made alliances with other disciplines in order to establish a set of methods that play an important role in the birds’ protection and the evaluation of the environmental quality of different ecosystems. In this case, the use of machine learning and deep learning techniques has produced big progress in birdsong identification. To make an approach from AI-IoT, we have used different approaches based on image feature comparison (through CNNs trained with Imagenet weights, such as EfficientNet or MobileNet) using the feature spectrogram for the birdsong, but also the use of the deep CNN (DCNN) has shown good performance for birdsong classification for reduction of the model size. A 5G IoT-based system for raw audio gathering has been developed, and different CNNs have been tested for bird identification from audio recordings. This comparison shows that Imagenet-weighted CNN shows a relatively high performance for most species, achieving 75% accuracy. However, this network contains a large number of parameters, leading to a less energy efficient inference. We have designed two DCNNs to reduce the amount of parameters, to keep the accuracy at a certain level, and to allow their integration into a small board computer (SBC) or a microcontroller unit (MCU).
{"title":"5G AI-IoT System for Bird Species Monitoring and Song Classification","authors":"Jaume Segura-García, Sean Sturley, M. Arevalillo-Herráez, J. Alcaraz-Calero, Santiago Felici-Castell, Enrique A. Navarro-Camba","doi":"10.3390/s24113687","DOIUrl":"https://doi.org/10.3390/s24113687","url":null,"abstract":"Identification of different species of animals has become an important issue in biology and ecology. Ornithology has made alliances with other disciplines in order to establish a set of methods that play an important role in the birds’ protection and the evaluation of the environmental quality of different ecosystems. In this case, the use of machine learning and deep learning techniques has produced big progress in birdsong identification. To make an approach from AI-IoT, we have used different approaches based on image feature comparison (through CNNs trained with Imagenet weights, such as EfficientNet or MobileNet) using the feature spectrogram for the birdsong, but also the use of the deep CNN (DCNN) has shown good performance for birdsong classification for reduction of the model size. A 5G IoT-based system for raw audio gathering has been developed, and different CNNs have been tested for bird identification from audio recordings. This comparison shows that Imagenet-weighted CNN shows a relatively high performance for most species, achieving 75% accuracy. However, this network contains a large number of parameters, leading to a less energy efficient inference. We have designed two DCNNs to reduce the amount of parameters, to keep the accuracy at a certain level, and to allow their integration into a small board computer (SBC) or a microcontroller unit (MCU).","PeriodicalId":221960,"journal":{"name":"Sensors (Basel, Switzerland)","volume":"51 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141411926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alexander Kuznetsov, Andrey Sheshil, Eugene Smolin, V. Grudtsov, D. Ryazantsev, Mark Shustinskiy, Tatiana Tikhonova, Irakli Kitiashvili, Valerii Vechorko, Natalia Komarova
Fabry disease is a lysosomal storage disorder caused by a significant decrease in the activity or absence of the enzyme α-galactosidase A. The diagnostics of Fabry disease during newborn screening are reasonable, due to the availability of enzyme replacement therapy. This paper presents an electrochemical method using complementary metal-oxide semiconductor (CMOS)-compatible ion-sensitive field effect transistors (ISFETs) with hafnium oxide-sensitive surfaces for the detection of α-galactosidase A activity in dried blood spot extracts. The capability of ISFETs to detect the reaction catalyzed by α-galactosidase A was demonstrated. The buffer composition was optimized to provide suitable conditions for both enzyme and ISFET performance. The use of ISFET structures as sensor elements allowed for the label-free detection of enzymatic reactions with melibiose, a natural substrate of α-galactosidase A, instead of a synthetic fluorogenic one. ISFET chips were packaged with printed circuit boards and microfluidic reaction chambers to enable long-term signal measurement using a custom device. The packaged sensors were demonstrated to discriminate between normal and inhibited GLA activity in dried blood spots extracts. The described method offers a promising solution for increasing the widespread distribution of newborn screening of Fabry disease.
法布里病是一种溶酶体贮积症,由α-半乳糖苷酶A的活性显著降低或缺失引起。由于酶替代疗法的出现,新生儿筛查中对法布里病的诊断是合理的。本文介绍了一种使用互补金属氧化物半导体(CMOS)兼容离子敏感场效应晶体管(ISFET)和氧化铪敏感表面检测干血斑提取物中α-半乳糖苷酶 A 活性的电化学方法。结果表明,ISFET 能够检测由 α-半乳糖苷酶 A 催化的反应。对缓冲液成分进行了优化,以便为酶和 ISFET 的性能提供合适的条件。使用 ISFET 结构作为传感器元件,可以无标记地检测α-半乳糖苷酶 A 的天然底物三聚木糖的酶促反应,而不是合成的含氟底物。ISFET 芯片与印刷电路板和微流体反应室封装在一起,可使用定制装置进行长期信号测量。实验证明,封装后的传感器可以区分干血斑提取物中正常和受抑制的 GLA 活性。所述方法为扩大法布里病新生儿筛查的分布范围提供了一种前景广阔的解决方案。
{"title":"Detection of α-Galactosidase A Reaction in Samples Extracted from Dried Blood Spots Using Ion-Sensitive Field Effect Transistors","authors":"Alexander Kuznetsov, Andrey Sheshil, Eugene Smolin, V. Grudtsov, D. Ryazantsev, Mark Shustinskiy, Tatiana Tikhonova, Irakli Kitiashvili, Valerii Vechorko, Natalia Komarova","doi":"10.3390/s24113681","DOIUrl":"https://doi.org/10.3390/s24113681","url":null,"abstract":"Fabry disease is a lysosomal storage disorder caused by a significant decrease in the activity or absence of the enzyme α-galactosidase A. The diagnostics of Fabry disease during newborn screening are reasonable, due to the availability of enzyme replacement therapy. This paper presents an electrochemical method using complementary metal-oxide semiconductor (CMOS)-compatible ion-sensitive field effect transistors (ISFETs) with hafnium oxide-sensitive surfaces for the detection of α-galactosidase A activity in dried blood spot extracts. The capability of ISFETs to detect the reaction catalyzed by α-galactosidase A was demonstrated. The buffer composition was optimized to provide suitable conditions for both enzyme and ISFET performance. The use of ISFET structures as sensor elements allowed for the label-free detection of enzymatic reactions with melibiose, a natural substrate of α-galactosidase A, instead of a synthetic fluorogenic one. ISFET chips were packaged with printed circuit boards and microfluidic reaction chambers to enable long-term signal measurement using a custom device. The packaged sensors were demonstrated to discriminate between normal and inhibited GLA activity in dried blood spots extracts. The described method offers a promising solution for increasing the widespread distribution of newborn screening of Fabry disease.","PeriodicalId":221960,"journal":{"name":"Sensors (Basel, Switzerland)","volume":"9 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141397072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Kotlyar, Jenitta Johnson Mapranathukaran, Gabriele Biagi, Anton J. Walsh, B. Lendl, L. O’Faolain
We demonstrated, for the first time, micro-ring resonator assisted photothermal spectroscopy measurement of a gas phase sample. The experiment used a telecoms wavelength probe laser that was coupled to a silicon nitride photonic integrated circuit using a fibre array. We excited the photothermal effect in the water vapor above the micro-ring using a 1395 nm diode laser. We measured the 1f and 2f wavelength modulation response versus excitation laser wavelength and verified the power scaling behaviour of the signal.
{"title":"Micro-Ring Resonator Assisted Photothermal Spectroscopy of Water Vapor","authors":"M. Kotlyar, Jenitta Johnson Mapranathukaran, Gabriele Biagi, Anton J. Walsh, B. Lendl, L. O’Faolain","doi":"10.3390/s24113679","DOIUrl":"https://doi.org/10.3390/s24113679","url":null,"abstract":"We demonstrated, for the first time, micro-ring resonator assisted photothermal spectroscopy measurement of a gas phase sample. The experiment used a telecoms wavelength probe laser that was coupled to a silicon nitride photonic integrated circuit using a fibre array. We excited the photothermal effect in the water vapor above the micro-ring using a 1395 nm diode laser. We measured the 1f and 2f wavelength modulation response versus excitation laser wavelength and verified the power scaling behaviour of the signal.","PeriodicalId":221960,"journal":{"name":"Sensors (Basel, Switzerland)","volume":"2016 13","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141400479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aiming to address the chicken-and-egg problem in star identification and the intrinsic parameter determination processes of on-orbit star sensors, this study proposes an on-orbit self-calibration method for star sensors that does not depend on star identification. First, the self-calibration equations of a star sensor are derived based on the invariance of the interstar angle of a star pair between image frames, without any requirements for the true value of the interstar angle of the star pair. Then, a constant constraint of the optical path from the star spot to the center of the star sensor optical system is defined to reduce the biased estimation in self-calibration. Finally, a scaled nonlinear least square method is developed to solve the self-calibration equations, thus accelerating iteration convergence. Our simulation and analysis results show that the bias of the focal length estimation in on-orbit self-calibration with a constraint is two orders of magnitude smaller than that in on-orbit self-calibration without a constraint. In addition, it is shown that convergence can be achieved in 10 iterations when the scaled nonlinear least square method is used to solve the self-calibration equations. The calibrated intrinsic parameters obtained by the proposed method can be directly used in traditional star map identification methods.
{"title":"Self-Calibration for Star Sensors","authors":"Jingneng Fu, Ling Lin, Qiang Li","doi":"10.3390/s24113698","DOIUrl":"https://doi.org/10.3390/s24113698","url":null,"abstract":"Aiming to address the chicken-and-egg problem in star identification and the intrinsic parameter determination processes of on-orbit star sensors, this study proposes an on-orbit self-calibration method for star sensors that does not depend on star identification. First, the self-calibration equations of a star sensor are derived based on the invariance of the interstar angle of a star pair between image frames, without any requirements for the true value of the interstar angle of the star pair. Then, a constant constraint of the optical path from the star spot to the center of the star sensor optical system is defined to reduce the biased estimation in self-calibration. Finally, a scaled nonlinear least square method is developed to solve the self-calibration equations, thus accelerating iteration convergence. Our simulation and analysis results show that the bias of the focal length estimation in on-orbit self-calibration with a constraint is two orders of magnitude smaller than that in on-orbit self-calibration without a constraint. In addition, it is shown that convergence can be achieved in 10 iterations when the scaled nonlinear least square method is used to solve the self-calibration equations. The calibrated intrinsic parameters obtained by the proposed method can be directly used in traditional star map identification methods.","PeriodicalId":221960,"journal":{"name":"Sensors (Basel, Switzerland)","volume":"70 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141408700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Talal H. Noor, Ayman Noor, Ahmed F. Alharbi, Ahmed Faisal, Rakan Alrashidi, A. S. Alsaedi, Ghada Alharbi, Tawfeeq Alsanoosy, A. Alsaeedi
Sign language is an essential means of communication for individuals with hearing disabilities. However, there is a significant shortage of sign language interpreters in some languages, especially in Saudi Arabia. This shortage results in a large proportion of the hearing-impaired population being deprived of services, especially in public places. This paper aims to address this gap in accessibility by leveraging technology to develop systems capable of recognizing Arabic Sign Language (ArSL) using deep learning techniques. In this paper, we propose a hybrid model to capture the spatio-temporal aspects of sign language (i.e., letters and words). The hybrid model consists of a Convolutional Neural Network (CNN) classifier to extract spatial features from sign language data and a Long Short-Term Memory (LSTM) classifier to extract spatial and temporal characteristics to handle sequential data (i.e., hand movements). To demonstrate the feasibility of our proposed hybrid model, we created a dataset of 20 different words, resulting in 4000 images for ArSL: 10 static gesture words and 500 videos for 10 dynamic gesture words. Our proposed hybrid model demonstrates promising performance, with the CNN and LSTM classifiers achieving accuracy rates of 94.40% and 82.70%, respectively. These results indicate that our approach can significantly enhance communication accessibility for the hearing-impaired community in Saudi Arabia. Thus, this paper represents a major step toward promoting inclusivity and improving the quality of life for the hearing impaired.
{"title":"Real-Time Arabic Sign Language Recognition Using a Hybrid Deep Learning Model","authors":"Talal H. Noor, Ayman Noor, Ahmed F. Alharbi, Ahmed Faisal, Rakan Alrashidi, A. S. Alsaedi, Ghada Alharbi, Tawfeeq Alsanoosy, A. Alsaeedi","doi":"10.3390/s24113683","DOIUrl":"https://doi.org/10.3390/s24113683","url":null,"abstract":"Sign language is an essential means of communication for individuals with hearing disabilities. However, there is a significant shortage of sign language interpreters in some languages, especially in Saudi Arabia. This shortage results in a large proportion of the hearing-impaired population being deprived of services, especially in public places. This paper aims to address this gap in accessibility by leveraging technology to develop systems capable of recognizing Arabic Sign Language (ArSL) using deep learning techniques. In this paper, we propose a hybrid model to capture the spatio-temporal aspects of sign language (i.e., letters and words). The hybrid model consists of a Convolutional Neural Network (CNN) classifier to extract spatial features from sign language data and a Long Short-Term Memory (LSTM) classifier to extract spatial and temporal characteristics to handle sequential data (i.e., hand movements). To demonstrate the feasibility of our proposed hybrid model, we created a dataset of 20 different words, resulting in 4000 images for ArSL: 10 static gesture words and 500 videos for 10 dynamic gesture words. Our proposed hybrid model demonstrates promising performance, with the CNN and LSTM classifiers achieving accuracy rates of 94.40% and 82.70%, respectively. These results indicate that our approach can significantly enhance communication accessibility for the hearing-impaired community in Saudi Arabia. Thus, this paper represents a major step toward promoting inclusivity and improving the quality of life for the hearing impaired.","PeriodicalId":221960,"journal":{"name":"Sensors (Basel, Switzerland)","volume":"11 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141396495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Matsuguchi, Kaito Horio, Atsuya Uchida, Rui Kakunaka, Shunsuke Shiba
A novel NH3 gas sensor is introduced, employing polyaniline (PANI) with a unique structure called a graft film. The preparation method was simple: polydopamine (PD) was coated on a flexible polyethylene terephthalate (PET) film and PANI graft chains were grown on its surface. This distinctive three-layer sensor showed a response value of 12 for 50 ppm NH3 in a dry atmosphere at 50 °C. This value surpasses those of previously reported sensors using structurally controlled PANI films. Additionally, it is on par with sensors that combine PANI with metal oxide semiconductors or carbon materials, the high sensitivity of which have been reported. To confirm our film’s potential as a flexible sensor, the effect of bending on the its characteristics was investigated. This revealed that although bending decreased the response value, it had no effect on the response time or recovery. This indicated that the sensor film itself was not broken by bending and had sufficient mechanical strength.
本文介绍了一种新型 NH3 气体传感器,该传感器采用了具有独特接枝膜结构的聚苯胺 (PANI)。制备方法很简单:在柔性聚对苯二甲酸乙二醇酯(PET)薄膜上涂覆聚多巴胺(PD),然后在其表面生长 PANI 接枝链。这种独特的三层传感器对 50 ppm NH3 在 50 °C 干燥环境中的响应值为 12。这一数值超过了之前报道的使用结构可控 PANI 薄膜的传感器。此外,它与结合了 PANI 和金属氧化物半导体或碳材料的传感器不相上下,后者的高灵敏度已被报道过。为了证实我们的薄膜作为柔性传感器的潜力,我们研究了弯曲对其特性的影响。结果表明,虽然弯曲会降低响应值,但对响应时间或恢复没有影响。这表明传感器薄膜本身不会因弯曲而破损,并且具有足够的机械强度。
{"title":"A Flexible Ammonia Gas Sensor Based on a Grafted Polyaniline Grown on a Polyethylene Terephthalate Film","authors":"M. Matsuguchi, Kaito Horio, Atsuya Uchida, Rui Kakunaka, Shunsuke Shiba","doi":"10.3390/s24113695","DOIUrl":"https://doi.org/10.3390/s24113695","url":null,"abstract":"A novel NH3 gas sensor is introduced, employing polyaniline (PANI) with a unique structure called a graft film. The preparation method was simple: polydopamine (PD) was coated on a flexible polyethylene terephthalate (PET) film and PANI graft chains were grown on its surface. This distinctive three-layer sensor showed a response value of 12 for 50 ppm NH3 in a dry atmosphere at 50 °C. This value surpasses those of previously reported sensors using structurally controlled PANI films. Additionally, it is on par with sensors that combine PANI with metal oxide semiconductors or carbon materials, the high sensitivity of which have been reported. To confirm our film’s potential as a flexible sensor, the effect of bending on the its characteristics was investigated. This revealed that although bending decreased the response value, it had no effect on the response time or recovery. This indicated that the sensor film itself was not broken by bending and had sufficient mechanical strength.","PeriodicalId":221960,"journal":{"name":"Sensors (Basel, Switzerland)","volume":"30 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141390391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The research on high-precision and all-scenario localization using the millimeter-wave (mmWave) band is of great urgency. Due to the characteristics of mmWave, blockages make the localization task more complex. This paper proposes a cooperative localization system among user equipment (UEs) assisted by reconfigurable intelligent surfaces (RISs), which considers device-to-device (D2D) communication. RISs are used as anchor points, and position estimation is achieved through signal exchanges between UEs. Firstly, we establish a localization model based on this system and derive the UEs’ positioning error bound (PEB) as a performance metric. Then, a UE-RIS joint beamforming design is proposed to optimize channel state information (CSI) with the objective of achieving the minimum PEB. Finally, simulation analysis demonstrates the advantages of the proposed scheme over RIS-assisted base station positioning, achieving centimeter-level accuracy with a 10 dBm lower transmission power.
{"title":"Localization Performance Analysis and Algorithm Design of Reconfigurable Intelligent Surface-Assisted D2D Systems","authors":"Mengke Wang, Tiejun Lv, Pingmu Huang, Zhipeng Lin","doi":"10.3390/s24113694","DOIUrl":"https://doi.org/10.3390/s24113694","url":null,"abstract":"The research on high-precision and all-scenario localization using the millimeter-wave (mmWave) band is of great urgency. Due to the characteristics of mmWave, blockages make the localization task more complex. This paper proposes a cooperative localization system among user equipment (UEs) assisted by reconfigurable intelligent surfaces (RISs), which considers device-to-device (D2D) communication. RISs are used as anchor points, and position estimation is achieved through signal exchanges between UEs. Firstly, we establish a localization model based on this system and derive the UEs’ positioning error bound (PEB) as a performance metric. Then, a UE-RIS joint beamforming design is proposed to optimize channel state information (CSI) with the objective of achieving the minimum PEB. Finally, simulation analysis demonstrates the advantages of the proposed scheme over RIS-assisted base station positioning, achieving centimeter-level accuracy with a 10 dBm lower transmission power.","PeriodicalId":221960,"journal":{"name":"Sensors (Basel, Switzerland)","volume":"18 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141405313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
An outstanding event related to the understanding of the physics of mechanical sensors occurred and was announced in 1954, exactly seventy years ago. This event was the discovery of the piezoresistive effect, which led to the development of semiconductor strain gauges with a sensitivity much higher than that obtained before in conventional metallic strain gauges. In turn, this motivated the subsequent development of the earliest micromachined silicon devices and the corresponding MEMS devices. The science and technology related to sensors has experienced noteworthy advances in the last decades, but the piezoresistive effect is still the main physical phenomenon behind many mechanical sensors, both commercial and in research models. On this 70th anniversary, this tutorial aims to explain the operating principle, subtypes, input–output characteristics, and limitations of the three main types of mechanical sensor: strain gauges, capacitive sensors, and piezoelectric sensors. These three sensor technologies are also compared with each other, highlighting the main advantages and disadvantages of each one.
{"title":"A Tutorial on Mechanical Sensors in the 70th Anniversary of the Piezoresistive Effect","authors":"F. Reverter","doi":"10.3390/s24113690","DOIUrl":"https://doi.org/10.3390/s24113690","url":null,"abstract":"An outstanding event related to the understanding of the physics of mechanical sensors occurred and was announced in 1954, exactly seventy years ago. This event was the discovery of the piezoresistive effect, which led to the development of semiconductor strain gauges with a sensitivity much higher than that obtained before in conventional metallic strain gauges. In turn, this motivated the subsequent development of the earliest micromachined silicon devices and the corresponding MEMS devices. The science and technology related to sensors has experienced noteworthy advances in the last decades, but the piezoresistive effect is still the main physical phenomenon behind many mechanical sensors, both commercial and in research models. On this 70th anniversary, this tutorial aims to explain the operating principle, subtypes, input–output characteristics, and limitations of the three main types of mechanical sensor: strain gauges, capacitive sensors, and piezoelectric sensors. These three sensor technologies are also compared with each other, highlighting the main advantages and disadvantages of each one.","PeriodicalId":221960,"journal":{"name":"Sensors (Basel, Switzerland)","volume":"24 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141404656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}