Technologies, Protocols, and applications of Internet of Things in greenhouse Farming: A survey of recent advances

IF 7.7 Q1 AGRICULTURE, MULTIDISCIPLINARY Information Processing in Agriculture Pub Date : 2025-03-01 DOI:10.1016/j.inpa.2024.04.002
Khalid M. Hosny , Walaa M. El-Hady , Farid M. Samy
{"title":"Technologies, Protocols, and applications of Internet of Things in greenhouse Farming: A survey of recent advances","authors":"Khalid M. Hosny ,&nbsp;Walaa M. El-Hady ,&nbsp;Farid M. Samy","doi":"10.1016/j.inpa.2024.04.002","DOIUrl":null,"url":null,"abstract":"<div><div>Greenhouse farming is considered one of the precision and sustainable forms of smart agriculture. Although greenhouse gases can support off-season crops inside the indoor environment, monitoring, controlling, and managing crop parameters at greenhouse farms more precisely and securely is necessary, even in harsh climate regions. The evolving Internet of Things (IoT) technologies, including smart sensors, devices, network topologies, big data analytics, and intelligent decision-making, are thought to be the solution for automating greenhouse farming parameters like internal atmosphere control, irrigation control, crop growth monitoring, and so on. This paper introduces a comprehensive survey of recent advances in IoT-based greenhouse farming. We summarize the related review articles. The classification of greenhouse farming based on IoT (smart greenhouse, hydroponics greenhouse, and vertical farming) is introduced. Also, we present a detailed architecture for the components of greenhouse agriculture applications based on IoT, including physical devices, communication protocols, and cloud/fog computing technologies. We also present a classification of IoT applications of greenhouse farming, including monitoring, controlling, tracking, and predicting. Furthermore, we present the technical and resource management challenges for optimal greenhouse farming. Moreover, countries already applying IoT in greenhouse farming have been presented. Lastly, future suggestions related to IoT-based greenhouse farming have been introduced.</div></div>","PeriodicalId":53443,"journal":{"name":"Information Processing in Agriculture","volume":"12 1","pages":"Pages 91-111"},"PeriodicalIF":7.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing in Agriculture","FirstCategoryId":"1091","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214317324000222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Greenhouse farming is considered one of the precision and sustainable forms of smart agriculture. Although greenhouse gases can support off-season crops inside the indoor environment, monitoring, controlling, and managing crop parameters at greenhouse farms more precisely and securely is necessary, even in harsh climate regions. The evolving Internet of Things (IoT) technologies, including smart sensors, devices, network topologies, big data analytics, and intelligent decision-making, are thought to be the solution for automating greenhouse farming parameters like internal atmosphere control, irrigation control, crop growth monitoring, and so on. This paper introduces a comprehensive survey of recent advances in IoT-based greenhouse farming. We summarize the related review articles. The classification of greenhouse farming based on IoT (smart greenhouse, hydroponics greenhouse, and vertical farming) is introduced. Also, we present a detailed architecture for the components of greenhouse agriculture applications based on IoT, including physical devices, communication protocols, and cloud/fog computing technologies. We also present a classification of IoT applications of greenhouse farming, including monitoring, controlling, tracking, and predicting. Furthermore, we present the technical and resource management challenges for optimal greenhouse farming. Moreover, countries already applying IoT in greenhouse farming have been presented. Lastly, future suggestions related to IoT-based greenhouse farming have been introduced.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
温室种植中的物联网技术、协议和应用:最新进展概览
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Information Processing in Agriculture
Information Processing in Agriculture Agricultural and Biological Sciences-Animal Science and Zoology
CiteScore
21.10
自引率
0.00%
发文量
80
期刊介绍: Information Processing in Agriculture (IPA) was established in 2013 and it encourages the development towards a science and technology of information processing in agriculture, through the following aims: • Promote the use of knowledge and methods from the information processing technologies in the agriculture; • Illustrate the experiences and publications of the institutes, universities and government, and also the profitable technologies on agriculture; • Provide opportunities and platform for exchanging knowledge, strategies and experiences among the researchers in information processing worldwide; • Promote and encourage interactions among agriculture Scientists, Meteorologists, Biologists (Pathologists/Entomologists) with IT Professionals and other stakeholders to develop and implement methods, techniques, tools, and issues related to information processing technology in agriculture; • Create and promote expert groups for development of agro-meteorological databases, crop and livestock modelling and applications for development of crop performance based decision support system. Topics of interest include, but are not limited to: • Smart Sensor and Wireless Sensor Network • Remote Sensing • Simulation, Optimization, Modeling and Automatic Control • Decision Support Systems, Intelligent Systems and Artificial Intelligence • Computer Vision and Image Processing • Inspection and Traceability for Food Quality • Precision Agriculture and Intelligent Instrument • The Internet of Things and Cloud Computing • Big Data and Data Mining
期刊最新文献
Editorial Board Supervised and unsupervised machine learning approaches for prediction and geographical discrimination of Iranian saffron ecotypes based on flower-related and phytochemical attributes An automatic method for estimating insect defoliation with visual highlights of consumed leaf tissue regions Innovative deep learning approach for cross-crop plant disease detection: A generalized method for identifying unhealthy leaves Security analysis of agricultural energy internet considering electricity load control for dragon fruit cultivation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1