Separation of molten electrolyte from the graphene nanocarbon product subsequent to electrolytic CO2 capture

Gad Licht , Kyle Hofstetter , Stuart Licht
{"title":"Separation of molten electrolyte from the graphene nanocarbon product subsequent to electrolytic CO2 capture","authors":"Gad Licht ,&nbsp;Kyle Hofstetter ,&nbsp;Stuart Licht","doi":"10.1016/j.decarb.2024.100044","DOIUrl":null,"url":null,"abstract":"<div><p>The molten electrolysis of CO<sub>2</sub> and its simultaneous transformation to graphene nanocarbons is a growing path to decarbonization of both anthropogenic CO<sub>2</sub>, and CO<sub>2</sub> directly from the air. By tuning the electrolysis conditions a variety of pure graphene nanocarbons are produced from CO<sub>2</sub>. The carbon in CO<sub>2</sub> is transformed at the cathode, growing as a carbanogel containing a matrix of the Graphene NanoCarbons (GNCs) and the molten electrolyte. This study demonstrates that one GNC product, carbon nanotubes from CO<sub>2</sub>, can be effectively separated from the carbanogel by removing the majority of the electrolyte for reuse in the electrolysis chamber. A molten electrolyte extraction efficiency of 98.5% from the carbanogel is achieved using filtration at high temperature and pressure. Optimization of the (1) press time, (2) filtration pressure applied to the carbanogel, and (3) filter type leads to a sequential increase in optimization. An increase of press time from 5 to 17 ​min increases the electrolyte extraction from 53.8% to 92% at 540 psi, and to 97.8% at 3700 psi. An increase in electrolyte extraction of 98.5% from the carbanogel occurs with the inclusion of a Dutch-weave screen in the multilayer filter. The optimization is conducted on 10 ​kg carbanogel samples, but instrumentation for up to 0.25-tonne carbanogel electrolyte separation is shown.</p></div>","PeriodicalId":100356,"journal":{"name":"DeCarbon","volume":"4 ","pages":"Article 100044"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949881324000106/pdfft?md5=0f7d5dfbc3a143a1f7cadfba76e0dc92&pid=1-s2.0-S2949881324000106-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DeCarbon","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949881324000106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The molten electrolysis of CO2 and its simultaneous transformation to graphene nanocarbons is a growing path to decarbonization of both anthropogenic CO2, and CO2 directly from the air. By tuning the electrolysis conditions a variety of pure graphene nanocarbons are produced from CO2. The carbon in CO2 is transformed at the cathode, growing as a carbanogel containing a matrix of the Graphene NanoCarbons (GNCs) and the molten electrolyte. This study demonstrates that one GNC product, carbon nanotubes from CO2, can be effectively separated from the carbanogel by removing the majority of the electrolyte for reuse in the electrolysis chamber. A molten electrolyte extraction efficiency of 98.5% from the carbanogel is achieved using filtration at high temperature and pressure. Optimization of the (1) press time, (2) filtration pressure applied to the carbanogel, and (3) filter type leads to a sequential increase in optimization. An increase of press time from 5 to 17 ​min increases the electrolyte extraction from 53.8% to 92% at 540 psi, and to 97.8% at 3700 psi. An increase in electrolyte extraction of 98.5% from the carbanogel occurs with the inclusion of a Dutch-weave screen in the multilayer filter. The optimization is conducted on 10 ​kg carbanogel samples, but instrumentation for up to 0.25-tonne carbanogel electrolyte separation is shown.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电解捕获二氧化碳后熔融电解液与石墨烯纳米碳产品的分离
熔融电解二氧化碳并同时将其转化为石墨烯纳米碳化物,是人类活动产生的二氧化碳和直接从空气中产生的二氧化碳的脱碳途径。通过调整电解条件,可以从二氧化碳中生产出各种纯石墨烯纳米碳。二氧化碳中的碳在阴极发生转化,形成含有石墨烯纳米碳(GNC)基质和熔融电解质的碳凝胶。这项研究表明,通过将大部分电解质从碳凝胶中分离出来并在电解槽中重复使用,可以有效地从二氧化碳中分离出一种 GNC 产物--碳纳米管。通过高温高压过滤,从卡碳凝胶中提取熔融电解质的效率达到 98.5%。通过优化 (1) 压榨时间、(2) 施加到碳凝胶上的过滤压力和 (3) 过滤器类型,优化效果依次提高。压榨时间从 5 分钟增加到 17 分钟,电解质萃取率在 540 psi 时从 53.8% 提高到 92%,在 3700 psi 时提高到 97.8%。在多层过滤器中加入荷兰网后,卡班凝胶的电解质萃取率提高了 98.5%。优化是在 10 千克的卡班凝胶样品上进行的,但也展示了用于 0.25 吨卡班凝胶电解质分离的仪器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Challenges and perspectives toward wide-bandgap perovskite subcell in four-terminal all-perovskite tandem solar cells Eliminating active CO2 concentration in Carbon Capture and Storage (CCUS): Molten carbonate decarbonization through an insulation/diffusion membrane Exploring Ni-based alkaline OER catalysts: A comprehensive review of structures, performance, and in situ characterization methods Evaluating the economic and carbon emission reduction potential of fuel cell electric vehicle-to-grid Halogen sites regulation in lead-free AgSb-based perovskites for efficient photocatalytic CO2 reduction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1