Exploring Ni-based alkaline OER catalysts: A comprehensive review of structures, performance, and in situ characterization methods

Zhanhong Xiao , Xiaosheng Tang , Feng Gao , Junmin Xue , Xiaopeng Wang
{"title":"Exploring Ni-based alkaline OER catalysts: A comprehensive review of structures, performance, and in situ characterization methods","authors":"Zhanhong Xiao ,&nbsp;Xiaosheng Tang ,&nbsp;Feng Gao ,&nbsp;Junmin Xue ,&nbsp;Xiaopeng Wang","doi":"10.1016/j.decarb.2024.100097","DOIUrl":null,"url":null,"abstract":"<div><div>Nickel-based catalysts have emerged as crucial components in alkaline oxygen evolution reactions (OER) due to their exceptional catalytic performance and unique structural properties. However, the understanding of their catalytic mechanisms remains incomplete. This review systematically explores the various types of Ni-based catalysts, including metal-organic frameworks (MOFs), perovskites, and layered double hydroxides (LDHs), while emphasizing their performance metrics. We critically assess the application of advanced in situ characterization techniques, such as in situ Raman spectroscopy and X-ray absorption spectroscopy (XAS), in elucidating the structural evolution and active species during the OER process. By addressing the interplay between catalyst structure and performance, this review aims to provide insights that drive future research efforts toward the optimization of Ni-based catalysts for sustainable hydrogen production. Key areas for potential research advancements are also identified.</div></div>","PeriodicalId":100356,"journal":{"name":"DeCarbon","volume":"7 ","pages":"Article 100097"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DeCarbon","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949881324000635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nickel-based catalysts have emerged as crucial components in alkaline oxygen evolution reactions (OER) due to their exceptional catalytic performance and unique structural properties. However, the understanding of their catalytic mechanisms remains incomplete. This review systematically explores the various types of Ni-based catalysts, including metal-organic frameworks (MOFs), perovskites, and layered double hydroxides (LDHs), while emphasizing their performance metrics. We critically assess the application of advanced in situ characterization techniques, such as in situ Raman spectroscopy and X-ray absorption spectroscopy (XAS), in elucidating the structural evolution and active species during the OER process. By addressing the interplay between catalyst structure and performance, this review aims to provide insights that drive future research efforts toward the optimization of Ni-based catalysts for sustainable hydrogen production. Key areas for potential research advancements are also identified.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Challenges and perspectives toward wide-bandgap perovskite subcell in four-terminal all-perovskite tandem solar cells Eliminating active CO2 concentration in Carbon Capture and Storage (CCUS): Molten carbonate decarbonization through an insulation/diffusion membrane Exploring Ni-based alkaline OER catalysts: A comprehensive review of structures, performance, and in situ characterization methods Evaluating the economic and carbon emission reduction potential of fuel cell electric vehicle-to-grid Halogen sites regulation in lead-free AgSb-based perovskites for efficient photocatalytic CO2 reduction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1